Question

Calculate the work (in joules) required to pump all of the water out of a full...

Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank

(b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to the top of the tank.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the work (in joules) required to pump all of the water out of a full...
Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank (a) is shaped like an inverted cone of radius 5 meters and height 10 meters where the spout is connected to a 2 meter tube extending vertically above the tank. (b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to...
A tank is full of water. Find the work required to pump the water out of...
A tank is full of water. Find the work required to pump the water out of the spout. Use the fact that water weighs 62.5 lb/ft3. (Assume a = 6 ft, b = 9 ft, and c = 10 ft.)
A triangular tank with height 3 meters, width 4 meters and length 8 meters is full...
A triangular tank with height 3 meters, width 4 meters and length 8 meters is full of water. How much work is required to pump the water out through a spout 2.5 meter above the top of the tank? (The density of water is approximately 1000 kg m3 .)
. A conical tank of with radius 5 m and height 10 m is filled with...
. A conical tank of with radius 5 m and height 10 m is filled with water. Calculate the work against gravity required to pump water (with density 1000 kg/m3 ) through a spout of 1 meter in height located at the top of the tank.
A tank, shaped like a cone has height 99 meter and base radius 11 meter. It...
A tank, shaped like a cone has height 99 meter and base radius 11 meter. It is placed so that the circular part is upward. It is full of water, and we have to pump it all out by a pipe that is always leveled at the surface of the water. Assume that a cubic meter of water weighs 10000N, i.e. the density of water is 10000Nm^3. How much work does it require to pump all water out of the...
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its...
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its curved side. Using 9.8 m/s^2 for the acceleration due to gravity and 1,000 kg/m^3 as the density of water, Set up the integral for the work required to pump the water out of the tank if: (a) the tank is full of water and it is being pumped out of a 1-meter long vertical spout at the top of the tank. (b) the tank...
A hemispherical tank of water (radius 10 ft) is being pumped out. Find the work done...
A hemispherical tank of water (radius 10 ft) is being pumped out. Find the work done in lowering the water level from 2 feet below the top of the tank to 4 feet below the tank given that the pump is placed a) at the top of the tank and b) the pump is placed 3 feet above the top of the tank. Clearly indicate how force and distance are represented and indicate where the 0 position is on the...
A tank shaped like a cone pointing downward has height 9 feet and base radius 3...
A tank shaped like a cone pointing downward has height 9 feet and base radius 3 feet, and is full of water. The weight density of water is 62.4 lb/ft^3. Find the work required to pump all of the water out over the top of the tank.
A spherical tank of radius 10 meters is completely full of liquefied petroleum gas. All the...
A spherical tank of radius 10 meters is completely full of liquefied petroleum gas. All the petroleum must be used emptied out of the tank and converted to alkylate. Compute the work needed to push all the petroleum out of the tank and out a 4 meter spout out of the top of the sphere. Liquefied petroleum gas has density 495 kg/m^3
(Integration Application) A water tank is shaped like an inverted cone with a height 2 meters...
(Integration Application) A water tank is shaped like an inverted cone with a height 2 meters and top radius 6 meters is full of water. Set up a Riemann Sum and an Integral to model the work that is required to pump the water to the level of the top of the tank? No need to integrate here. (Note that density of water is 1000 kg/m3 ). RIEMANN SUM ______________________________________________ INTEGRAL____________________________________________________ Provide an explanation as to the difference of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT