Question

A tank shaped like a cone pointing downward has height 9 feet and base radius 3...

A tank shaped like a cone pointing downward has height 9 feet and base radius 3 feet, and is full of water. The weight density of water is 62.4 lb/ft^3. Find the work required to pump all of the water out over the top of the tank.

Homework Answers

Answer #1

Please see in my solution

please like me thank you

please thumbs up

please like me....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank, shaped like a cone has height 99 meter and base radius 11 meter. It...
A tank, shaped like a cone has height 99 meter and base radius 11 meter. It is placed so that the circular part is upward. It is full of water, and we have to pump it all out by a pipe that is always leveled at the surface of the water. Assume that a cubic meter of water weighs 10000N, i.e. the density of water is 10000Nm^3. How much work does it require to pump all water out of the...
a circular cone shaped tank that is 10 feet high, is filled to about 2 feet...
a circular cone shaped tank that is 10 feet high, is filled to about 2 feet in height with lb/ft^3 density olive oil. How much work is required to pump the oil to the edge of the tank
(Integration Application) A water tank is shaped like an inverted cone with a height 2 meters...
(Integration Application) A water tank is shaped like an inverted cone with a height 2 meters and top radius 6 meters is full of water. Set up a Riemann Sum and an Integral to model the work that is required to pump the water to the level of the top of the tank? No need to integrate here. (Note that density of water is 1000 kg/m3 ). RIEMANN SUM ______________________________________________ INTEGRAL____________________________________________________ Provide an explanation as to the difference of the...
A hemispherical bowl with a radius of 6 feet is full of water. If the density...
A hemispherical bowl with a radius of 6 feet is full of water. If the density of water is 62.5 lb/ft^3 , how much work is required to pump all the water out of the outlet at the top of the tank?
A tank in the shape of an inverted cone 12 feet tall and 2 feet in...
A tank in the shape of an inverted cone 12 feet tall and 2 feet in radius is full of water. Calculate the work W required to pump all the water to a height of 1 foot above the tank.
A water tank has the shape of an inverted cone with a height of 6 meters...
A water tank has the shape of an inverted cone with a height of 6 meters and a radius of 4 meters. The tank is not completely full; at its deepest point, the water is 5 meters deep. How much work is required to pump out the water? Assume the water is pumped out to the level of the top of the tank.
A tank in the shape of an inverted right circular cone has height 9 meters and...
A tank in the shape of an inverted right circular cone has height 9 meters and radius 13 meters. It is filled with 3 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. Note: the density of hot chocolate is δ=1480kg/m^3
A hemispherical tank of water (radius 10 ft) is being pumped out. Find the work done...
A hemispherical tank of water (radius 10 ft) is being pumped out. Find the work done in lowering the water level from 2 feet below the top of the tank to 4 feet below the tank given that the pump is placed a) at the top of the tank and b) the pump is placed 3 feet above the top of the tank. Clearly indicate how force and distance are represented and indicate where the 0 position is on the...
A tank in the shape of a circular paraboloid with top radius 3m and height 9...
A tank in the shape of a circular paraboloid with top radius 3m and height 9 m is filled with water. How much work is required to pump all the water out over the side?
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in...
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in the ground so that the circular top is 1 f below the ground (parallel to the ground). Howw much work (in ft-lbs) is required to pump the gasoline occupying the top foot of the tank to aheight 2ft above the ground if the tank id full. (ignore the water the ends in the hose from the pumping process aftertop foot is done being pumped...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT