Question

A company makes cylindrical tin cans with closed tops and bottoms. What is the largest tin...

A company makes cylindrical tin cans with closed tops and bottoms. What is the largest tin can that can be made of 2500 cm^2 of metal.??   r= Radius h=Height

Volume =Pi*r^2*h ; Surface Area =2*Pi*r^2 +2*Pi*r*h

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
240 square cm of metal is available to make a cylindrical can, closed on the top...
240 square cm of metal is available to make a cylindrical can, closed on the top and bottom. The can-making process is so efficient that it can use all of the metal. What are the radius and height of the can with the largest possible volume? Give exact answers and approximate answers. Volume of a cylinder: V = πr2h Surface area of a cylinder: 2πr2 + 2πrh
A new junk food — PopKorn — is to be sold in large cylindrical metal cans...
A new junk food — PopKorn — is to be sold in large cylindrical metal cans with a removable plastic lid instead of a metal top. The metal side and bottom will be of uniform thickness, and the volume is fixed to be 64π in^3 . What base radius r and height h for the can will require the least amount of metal? Show work, and include an argument to show your values for r and h really give a...
A cylindrical can is to have volume 1500 cubic centimeters. Determine the radius and the height...
A cylindrical can is to have volume 1500 cubic centimeters. Determine the radius and the height which will minimize the amount of material to be used. Note that the surface area of a closed cylinder is S=2πrh+2πr2 and the volume of a cylindrical can is V=πr2h radius =. cm height = cm
A company wants to design an open top cylindrical bin with volume of 250 cm3. What...
A company wants to design an open top cylindrical bin with volume of 250 cm3. What dimensions, which are the radius r and height h, will minimize the total surface area of the bin? Round to one decimal place. (hint: consider bin disassembled for area of the side) Geometry formulas: Area of a circle is ? = ??2, Volume of a cylinder is ? = ??2h, and circumference of a circle is ? = 2??. Use ? = 3.14
A manufacturer makes a cylindrical can with a volume of 500 cubic centimeters. What dimensions (radius...
A manufacturer makes a cylindrical can with a volume of 500 cubic centimeters. What dimensions (radius and height) will minimize the material needed to produce each can, that is, minimize the surface area? Explain and show all steps business calculus.
A grain silo consists of a cylindrical concrete lower surmounted by a mental hemispherical dome. The...
A grain silo consists of a cylindrical concrete lower surmounted by a mental hemispherical dome. The metal in the dome costs 1.7 times as much as the concrete(per unit of a surface area). If the volume of the silo is 950 m^3, what are the dimensions of the silo(radius and height of the cylindrical tower) that minimize the cost of the materials? Assume the silo has no floor and no flat ceiling under the dome. -what is the function of...
An open cylindrical trashcan is to hold 12 cubic feet of material. What should be its...
An open cylindrical trashcan is to hold 12 cubic feet of material. What should be its dimensions if the cost of material used is to be a minimum? [Surface Area, S = πr^2 + 2πrℎ where r = radius and h = height.]
A grain silo consists of a cylindrical concrete tower surmounted by a metal hemispherical dome. The...
A grain silo consists of a cylindrical concrete tower surmounted by a metal hemispherical dome. The metal in the dome costs 2.1 times as much as the concrete​ (per unit of surface​ area). If the volume of the silo is 600m^3 what are the dimensions of the silo​ (radius and height of the cylindrical​ tower) that minimize the cost of the​ materials? Assume the silo has no floor and no flat ceiling under the dome. What is the function of...
Three charges are enclosed in a cylindrical shell. What is the flux coming through the closed...
Three charges are enclosed in a cylindrical shell. What is the flux coming through the closed surface of the shell? Let q1 = 6 nC, q2 = 5 nC, q3 = -10 nC. What is the electric field of a point charge of 57 nC at a point 10 cm away via Gauss' Law? Challenging: You have a solid sphere of charge Q and radius R. The charge is uniformly distributed throughout the sphere. Which of the following is correct?...
A company is planning to manufacture cylindrical above-ground swimming pools. When filled to the top, a...
A company is planning to manufacture cylindrical above-ground swimming pools. When filled to the top, a pool must hold 100 cubic feet of water. The material used for the side of a pool costs $3 per square foot and the mate-rial used for the bottom of a pool costs $2 per square foot.(There is no top.) What is the radius of the pool which minimizes the manufacturing cost? (Hint: The volume of a cylinder of height hand radius r isV=πr2h,...