Question

Locate ∫∫R(2x+5y)dA where R is the parallelogram with vertices (0,0), (5,2), (4,-4), & (9,-2). Use the...

Locate ∫∫R(2x+5y)dA where R is the parallelogram with vertices (0,0), (5,2), (4,-4), & (9,-2).

Use the transformation x=5u+4v, y=2u−4v

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find∫∫R(2x+4y)dA where RR is the parallelogram with vertices (0,0), (-4,2), (5,4), and (1,6). Use the transformation...
Find∫∫R(2x+4y)dA where RR is the parallelogram with vertices (0,0), (-4,2), (5,4), and (1,6). Use the transformation x=−4u+5v , y=2u+4v
Use the given transformation to evaluate the integral.    (12x + 12y) dA R , where...
Use the given transformation to evaluate the integral.    (12x + 12y) dA R , where R is the parallelogram with vertices (−2, 4), (2, −4), (5, −1), and (1, 7) ; x = 1 3 (u + v), y = 1 3 (v − 2u)
Use the given transformation to evaluate the double integral. (12x + 12y) dA R , where...
Use the given transformation to evaluate the double integral. (12x + 12y) dA R , where R is the parallelogram with vertices (−3, 6), (3, −6), (4, −5), and (−2, 7) ; x = 1/ 3 *(u + v), y = 1 /3* (v − 2u)
Use the given transformation to evaluate the integral. (x − 6y) dA, R where R is...
Use the given transformation to evaluate the integral. (x − 6y) dA, R where R is the triangular region with vertices (0, 0), (5, 1), and (1, 5). x = 5u + v, y = u + 5v
Use the given transformation to evaluate the integral. (15x + 15y) dA R , where R...
Use the given transformation to evaluate the integral. (15x + 15y) dA R , where R is the parallelogram with vertices (−1, 4), (1, −4), (2, −3), and (0, 5) ; x = 1 5 (u + v), y = 1 5 (v − 4u)
Use the given transformation to evaluate the double integral of (x-6y) dA, where R is the...
Use the given transformation to evaluate the double integral of (x-6y) dA, where R is the triangular region with vertices (0, 0), (5, 1), and (1, 5). x = 5u + v, y = u + 5v
1. Compute∫∫R x−3y/4x−5y dA where R is the parallelogram bounded by the lines x − 3y=...
1. Compute∫∫R x−3y/4x−5y dA where R is the parallelogram bounded by the lines x − 3y= 0, x−3y= 6, 4x−5y= 1, and 4x−5y=e2.
Use the given transformation to evaluate the integral. 9x2dA, R where R is the region bounded...
Use the given transformation to evaluate the integral. 9x2dA, R where R is the region bounded by the ellipse 16x2 + 25y2 = 400; x = 5u, y = 4v
Use the given transformation to evaluate the integral. (x − 8y) dA, R where R is...
Use the given transformation to evaluate the integral. (x − 8y) dA, R where R is the triangular region with vertices (0, 0), (7, 1), and (1, 7). x = 7u + v, y = u + 7v
Use the given transformation to evaluate the integral. 6xy dA R , where R is the...
Use the given transformation to evaluate the integral. 6xy dA R , where R is the region in the first quadrant bounded by the lines y = 2 3 x and y = 3 2 x and the hyperbolas xy = 2 3 and xy = 3 2 ; x = u/v, y = v