Question

Sketch the graph of a function that satisfies the given criteria. f(1) = 0, f^ prime...

Sketch the graph of a function that satisfies the given criteria.

f(1) = 0, f^ prime (-1)=f^ prime (2)=f^ prime (10)=0 lim x infty f(x)=1 lim x 6 f(x)=- infty f^ prime (x)<0 ort(- infty,-1),(2,7),(10, infty) f^ prime (x)>0 on(-1,2),(7,10) f^ prime prime (x)>0 on(- infty,1),(13, infty) f^ prime prime (x)<0 on (1,7),(7,13)

Homework Answers

Answer #1

When x= 1; y = 0

There is a horizontal tangents at x = -1, 2, 10

There is a horizontal asymptote at y = 1.

There is a vertical asymptote at x = 7.

The function decreases at the given intervals.

The function increases for the given intervals.

At the given interval the function is concave up.

The function is concave down in this interval.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7. (a) Sketch a graph of a function f(x) that satisfies all of the following conditions....
7. (a) Sketch a graph of a function f(x) that satisfies all of the following conditions. i. f(2) = 3 and f(1) = −1 ii. lim x→−4 f(x) = −∞ iii. limx→∞ f(x) = 1 iv. lim x→−∞ f(x) = −2 v. lim x→−1+ f(x) = ∞ vi. lim x→−1− f(x) = −∞ vii. f 0 (x) > 0 on (−4, −3.5) ∪ (−2.5, −1.5) ∪ (1, 2) ∪ (2, ∞) viii. f 0 (x) < 0 on (−∞, −4)...
Sketch the graph of a function that is continuous on (−∞,∞) and satisfies the following sets...
Sketch the graph of a function that is continuous on (−∞,∞) and satisfies the following sets of conditions. f″(x) > 0 on (−∞,−2); f″(−2) = 0; f′(−1) = f′(1) = 0; f″(2) = 0; f′(3) = 0; f″(x) > 0 on ( 4, ∞)
Sketch a graph of a function that satisfies the following conditions. Then take a picture and...
Sketch a graph of a function that satisfies the following conditions. Then take a picture and upload your graph. f is continuous and even f(2) = -1 f'(x) = 2x if 0 < x < 2 f'(x) = -2/3 if 2 < x < 5 f'(x) = 0 if x > 5
Sketch a possible graph of a function that satisfies the conditions: ? (0 ) = 2,...
Sketch a possible graph of a function that satisfies the conditions: ? (0 ) = 2, ?′(?) > 0 ?? (−∞,4), ?′(?) < 0 ?? (4,∞), f is concave down everywhere.
sketch the graph of one and only one function that satisfies all the conditions listed below:...
sketch the graph of one and only one function that satisfies all the conditions listed below: a. f(-x) = -f(x) b. lim as x approaches 4- f(x)= infinity c.lim as x approaches 4+ f(x)=-infinity d. Limit as x approaches infinity f(x)=2 e. the second derivative of f(x) >0 on the interval (0,4)
Sketch the graph of a function f(x) that satisfies all of the conditions listed below. Be...
Sketch the graph of a function f(x) that satisfies all of the conditions listed below. Be sure to clearly label the axes. f(x) is continuous and differentiable on its entire domain, which is (−5,∞) limx→-5^+ f(x)=∞ limx→∞f(x)=0limx→∞f(x)=0 f(−2)=−4,f′(−2)=0f(−2)=−4,f′(−2)=0 f′′(x)>0f″(x)>0 for −5<x<1−5<x<1 f′′(x)<0f″(x)<0 for x>1x>1
For 1 and 2, give a function f that satisfies the given conditions. 1. f '...
For 1 and 2, give a function f that satisfies the given conditions. 1. f ' (x) = x^5 + 1 + 2 sec x tan x with f(0) = 4 2. f '' (x) = 12x + sin x with f(0) = 3 and f ' (0) = 7
Sketch a continuous graph that satisfies each set of conditions. d) f"(x)=1 when x>-2, f"(x)=-1 when...
Sketch a continuous graph that satisfies each set of conditions. d) f"(x)=1 when x>-2, f"(x)=-1 when x<-2, f(-2)=-4
Given the polynomial function f(x)=(x-a)(x-b)^2, and a<0<b, find the following: A). Sketch the graph B). find...
Given the polynomial function f(x)=(x-a)(x-b)^2, and a<0<b, find the following: A). Sketch the graph B). find the x and the y intercepts C). find the solution to f(x)<0 D). find the solution to f(x) is greater than or equal to 0
Sketch the graph of a function f that is continuous on (−∞,∞) and has all of...
Sketch the graph of a function f that is continuous on (−∞,∞) and has all of the following properties: (a) f0(1) is undefined (b) f0(x) > 0 on (−∞,−1) (c) f is decreasing on (−1,∞). Sketch a function f on some interval where f has one inflection point, but no local extrema.