Question

The exponential decay function for 100 mg of the radioactive isotope californium-253 is given by the...

The exponential decay function for 100 mg of the radioactive isotope californium-253 is given by the function below, where t is in days:

v(t)= 100e^-0.0389t

Find the rate of change of the radioactive isotope after 30 days has elapsed

with full steps please

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The exponential decay function for 80 mg of the radioactive isotope nitrogen-12 is given by the...
The exponential decay function for 80 mg of the radioactive isotope nitrogen-12 is given by the function below, where t is in minutes: y(t)=80e-0.0696t Find the rate of change of the radioactive isotope after 22 minutes has elapsed. Round answer to 2 decimal places. SHOW WORK
An exponential decay function can be used to model the number of grams of a radioactive...
An exponential decay function can be used to model the number of grams of a radioactive material that remain after a period of time.​ Carbon-14 decays over​ time, with the amount remaining after t years given by y=y 0 e Superscript negative 0.00012378 ty=y0e−0.00012378t​, where y0 is the original amount. If the original amount of​ carbon-14 is 450450 grams, find the number of years until 346346 grams of​ carbon-14 remain.
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has...
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has an initial mass of 64 mg, a function that models the mass in mg after t hours is a(t) =   The initial mass will decay to 12 mg after ______ hours Radioactive decay equation: a(t) = a0⋅2 ^ (−t / h) a0 = starting amount a(t) = amount after t hours h = half life in hours
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay....
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay. The molar mass of 239Pu is 239.0521634 amu. The sample initially contains 10.0 g of 239Pu. (a) Calculate the number of moles of 239Pu that are left in the sample after 15 000 years. (4) (b) Determine the activity of 239Pu after 15 000 years, in units of Bq.
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay....
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay. The molar mass of 239Pu is 239.0521634 amu. The sample initially contains 10.0 g of 239Pu. (a) Calculate the number of moles of 239Pu that are left in the sample after 15 000 years. (4) (b) Determine the activity of 239Pu after 15 000 years, in units of Bq.
1. Given that a freshly prepared radioactive isotope has a half-life of 10 days, the percentage...
1. Given that a freshly prepared radioactive isotope has a half-life of 10 days, the percentage of it remaining after 30 days is A 30.0 %. B 10.0 %. C 12.5 %. D 72.5 %. 2. During a second half-life, the original material has decayed A 25%. B 50%. C 75%. D 100%.
Carbon 14 is a radioactive isotope of carbon, the most common isotope of carbon being carbon...
Carbon 14 is a radioactive isotope of carbon, the most common isotope of carbon being carbon 12. Carbon 14 is created when cosmic ray bombardment changes nitrogen 14 to carbon 14 in the upper atmosphere. The resulting carbon 14 combines with atmospheric oxygen to form radioactive carbon dioxide, which is incorporated into plants by photosynthesis. Animals acquire carbon 14 by eating plants. When an animal or plant dies, it ceases to take on carbon 14, and the amount of isotope...
Because the slopes of your plots are the negative of the decay constant, you can use...
Because the slopes of your plots are the negative of the decay constant, you can use the equation derived in Part 1 to calculate the half life of hydrogen-3 and carbon-14. Show your work for the calculation below. The number of radioactive particles is governed by the equation: N(t)= N0e−λt where N(t) is the number of radioactive particles after time t, N0 is the original number of particles, and λ is the decay constant. Show that the half life (the...
A nuclear scientist has a sample of 100mg of a radioactive material. She monitors the amount...
A nuclear scientist has a sample of 100mg of a radioactive material. She monitors the amount of material over a 30 hour period and obtains the data below: Hours 0 5 10 15 20 25 30 Mg 100 67.3 46.1 31.5 21.6 14.8 10.1 Rounding to 4 decimal places, use a graphing calculator to find an exponential model for the data. Then predict the amount of material remaining after 40 hours and round to two decimal places. 8.23 mg 5.16...
strontium 90 is a radioactive material that decays according to the function A(t)=Aoe^0.0244t ,where So is...
strontium 90 is a radioactive material that decays according to the function A(t)=Aoe^0.0244t ,where So is the initial amount present and A is the amount present at time t (in year). assume that a scientist has a sample of 800 grams of strontium 90. a)what is the decay rate of strontium 90? b)how much strontium 90 is left after 10 years? c)when Will only 600 grams of strontium 90 be left? d)what is the half life of strontium 90?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT