Question

Consider two particles moving in the xyxy-plane according to parametric equations. At time tt, the position...

Consider two particles moving in the xyxy-plane according to parametric equations.

At time tt, the position of particle A is given by x(t) = 2t-3, y(t) = t^2-3t-5x

Let kk be some real number. At time tt, the position of particle B is given by x(t) = 4t+3, y(t) = 2t+k^2x

Think about the curve traced out by the movement of particle A. Find the equation of the tangent line to the curve at t=4t=4. Give your answer in slope-intercept form, y=mx+by=mx+b.

At any point, is there a horizontal tangent line to the curve traced out by the movement of particle A? If so, give the (x,y)(x,y)-coordinates of the position of the curve where the horizontal tangent line occurs. If not, explain why.

Is there a value for the real number k for which Particles A and B will collide? If so, give a value of kk. If not, clearly explain your reasoning why. In either case, remember to show work to support your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two particles are moving in the xy-plane. They move along straight lines at a constant speed....
Two particles are moving in the xy-plane. They move along straight lines at a constant speed. At time t, particle A's position is given by x = t + 4, y = 1/2t-7 and particle B's position is given by x = 18 − 2t, y = 5 − 1/3t. Find the time (i.e., the value of t) at which the distance between A and B is minimal.
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find...
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find the values for t where the tangent lines are horizontal on the parametric curve. For the horizontal tangent lines, you do not need to find the (x,y) pairs for these values of t. Find the values for t where the tangent lines are vertical on the parametric curve. For these values of t find the coordinates of the points on the parametric curve.
Find parametric equations for the tangent line to the curve with the given parametric equations at...
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x = 6 cos(t), y = 6 sin(t), z = 10 cos(2t); (3 3 , 3, 5) x(t), y(t), z(t) = ??
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
3. The parametric curve ~r1(t) = 4t~i + (2t − 2)~j + (6t 2 − 7)~k...
3. The parametric curve ~r1(t) = 4t~i + (2t − 2)~j + (6t 2 − 7)~k is given. (a) Find a parametric equation of the tangent line at the point (4, 0, −1) (b) Find points on the curve at which the tangent lines are perpendicular to the line x = z, y = 0 (c) Show that the curve is at the intersection between a plane and a cylinder
For the following equation x=2t^2,y=3t^2,z=4t^2;1 less or equal to t less or equal to 3 i)...
For the following equation x=2t^2,y=3t^2,z=4t^2;1 less or equal to t less or equal to 3 i) Write the positive vector tangent of the curve with parametric equations above. ii) Find the length function s(t) for the curve. iii) Write the position vector of s and verify by differentiation that this position vector in terms of s is a unit tangent to the curve.
On the parametric curve (x(t), y(t)) = (t − t^2 , t^2 + 3t) pictured below,...
On the parametric curve (x(t), y(t)) = (t − t^2 , t^2 + 3t) pictured below, determine the (x, y)-coordinates of the marked point where the tangent line is horizontal.
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 ....
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 . (a) Find dy/dx in terms of t. (b) Write the equations of the horizontal tangent lines to the curve (c) Write the equations of the vertical tangent lines to the curve. (d) Using the results in (a), (b) and (c), sketch the curve for −2 ≤ t ≤ 2.
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y =...
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y = 3sin(t). Find the expression which represents the tangent of line C. Write the equation of the line that is tangent to C at t = π/ 3.
Find vector and parametric equations for: a) the line that passes through the point P(9,-9,6) parallel...
Find vector and parametric equations for: a) the line that passes through the point P(9,-9,6) parallel to the vector u = <3,4,-2> b) the line passing through the point P(6,-2,6) parallel to the line x=2t, y = 2 - 3t, z = 3 +6t c) the line passing through the point P(5, -2,1) parallel to the line x = 3 - t, y = -2 +4t, z = 4 + 8t