Question

Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y =...

Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y = 3sin(t). Find the expression which represents the tangent of line C. Write the equation of the line that is tangent to C at t = π/ 3.

Homework Answers

Answer #1

Please appreciate my work.
If you have any query regarding this question. You are free to ask.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part...
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part a: Give an equation relating x and y that represents the curve. Part b: Find the slope of the tangent line to the curve when t = π/6 . Part c: State the points (x,y) where the tangent line is horizontal.
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3...
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3 sin(t), t ∈ [0, 2π) Part a: (2 points) Give an equation relating x and y that represents the curve. Part b: (4 points) Find the slope of the tangent line to the curve when t = π 6 . Part c: (4 points) State the points (x, y) where the tangent line is horizontal
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3...
Consider the parametric equations below. x = t sin(t),    y = t cos(t),    0 ≤ t ≤ π/3 Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Use your calculator to find the surface area correct to four decimal places
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t)...
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t) for 0 ≤ t ≤ 1 (a) Find the slope of a tangent line to this curve when t = 1. (b) Find the arclength of this curve
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 ....
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 . (a) Find dy/dx in terms of t. (b) Write the equations of the horizontal tangent lines to the curve (c) Write the equations of the vertical tangent lines to the curve. (d) Using the results in (a), (b) and (c), sketch the curve for −2 ≤ t ≤ 2.
Find parametric equations for the tangent line to the curve with the given parametric equations at...
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x = 6 cos(t), y = 6 sin(t), z = 10 cos(2t); (3 3 , 3, 5) x(t), y(t), z(t) = ??
Determine the tangent line at point t = π/3 of the curve defined by the parametric...
Determine the tangent line at point t = π/3 of the curve defined by the parametric equations: X = 2 sin (t) Y = 5 cos (t)
1. Graph the curve given in parametric form by x = e t sin(t) and y...
1. Graph the curve given in parametric form by x = e t sin(t) and y = e t cos(t) on the interval 0 ≤ t ≤ π2. 2. Find the length of the curve in the previous problem. 3. In the polar curve defined by r = 1 − sin(θ) find the points where the tangent line is vertical.
Consider the parametric equations x = 5 - t^2 , y = t^3 - 48t a....
Consider the parametric equations x = 5 - t^2 , y = t^3 - 48t a. Find dy dx and d 2y dx2 , and determine for what values of t is the curve concave up, and when is it concave down. b. Find where is the tangent line horizontal, and where is it vertical.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT