Question

Suppose that H is a normal subgroup of G and K is any subgroup of G....

Suppose that H is a normal subgroup of G and K is any subgroup of G. Define HK = {hk : h ? H, k ? K}.

(a) Show that HK is a subgroup of G.

(b) Does the conclusion of (a) continue to hold if H is not normal in G? Justify

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If H and K are arbitrary subgroups of G. Prove that HK is a subgroup of...
If H and K are arbitrary subgroups of G. Prove that HK is a subgroup of G if and only if HK=KH.
If N is a normal subgroup of G and H is any subgroup of G, prove...
If N is a normal subgroup of G and H is any subgroup of G, prove that NH is a subgroup of G.
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Suppose N is a normal subgroup of G such that |G/N|= p is a prime. Let...
Suppose N is a normal subgroup of G such that |G/N|= p is a prime. Let K be any subgroup of G. Show that either (a) K is a subgroup of N or (b) both G=KN and |K/(K intersect N)| = p.
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group...
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group G/H abelian? Justify?
Let G be an Abelian group and let H be a subgroup of G Define K...
Let G be an Abelian group and let H be a subgroup of G Define K = { g∈ G | g3 ∈ H }. Prove that K is a subgroup of G .
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup of G then phi(N) is a normal subgroup of H. Prove it is a subgroup and prove it is normal?
Let H and K be subgroups of a group G so that HK is also a...
Let H and K be subgroups of a group G so that HK is also a subgroup. Show that HK = KH.
Suppose H is a normal subgroup of G where both H and G/H are solvable groups....
Suppose H is a normal subgroup of G where both H and G/H are solvable groups. Prove that G is then a solvable group as well.
f H and K are subgroups of a group G, let (H,K) be the subgroup of...
f H and K are subgroups of a group G, let (H,K) be the subgroup of G generated by the elements {hkh−1k−1∣h∈H, k∈K}. Show that : H◃G if and only if (H,G)<H
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT