General Meter is considering two mergers. The first is
with Firm A. in its own volate industry. the auto speedometer
industry, while the second is a merger with Firm B in an industry
that moves in the opposite direction (and will tend to level out
performance due to negative correlation).
General Meter Merger/Firm
possible earnings in Mil. $45. 50 and 55. probability. 20. .20 and
.60.
General Meters Merger with Firm B.
possible earning in Mil. $45, 50 and 55.
Probability is .15. .30. and. 55
a. compute the means. standard deviation, and coefficient of
variations for both investments.
Mean or Expected Return =
Mean A = (45*0.2 + 50*0.2 + 55*0.6) = 52
Mean B = (45*0.15 + 50*0.3 + 55*0.55) = 52
Standard Deviation =
Standard Deviation A
Given Return(a) | Expected Return(b) | (a-b)^2 | Probability | SD |
45 | 52 | 49 | 0.2 | 9.8 |
50 | 52 | 4 | 0.2 | 0.8 |
55 | 52 | 9 | 0.6 | 5.4 |
Total | 16 |
SD = (16)^0.5 = 4
Standard Deviation B
Given Return(a) | Expected Return(b) | (a-b)^2 | Probability | SD |
45 | 52 | 49 | 0.15 | 7.35 |
50 | 52 | 4 | 0.3 | 1.2 |
55 | 52 | 9 | 0.55 | 4.95 |
Total | 13.5 |
SD = (13.5)^0.5 = 3.67
coefficient of variation A =
= 4/52 = 7.69%
CV B = 3.67/52 = 7.07%
Get Answers For Free
Most questions answered within 1 hours.