Question

The current price of a non-dividend paying stock is $50 and the continuously compounded risk free...

The current price of a non-dividend paying stock is $50 and the continuously compounded risk free interest rate 8%. Using options, you would like to just expose yourself to the risk and returns of the stock over a period of 6 months without actually buying the stock. Though you don’t have to pay the price of the stock for this, there is still a cost involved now. How much is it?

Homework Answers

Answer #1

Value of the option is $ 2.04 as per the following calculation :

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is 5% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max(?! − 63, 0)]" where ST is the stock price in six months?
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $50, is 30%. The risk-free rate is 5% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max (St − 63, 0)]" where is the stock price in six months?
The volatility of a non-dividend-paying stock whose price is $40, is 35%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $40, is 35%. The risk-free rate is 6% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max(?!−52,0)]" where is the stock price in six months?
The current price of a non-dividend-paying stock is $40. Over the next year it is expected...
The current price of a non-dividend-paying stock is $40. Over the next year it is expected to rise to $42 or fall to $37. An investor buys put options with a strike price of $41 expiring in one year. Please form a riskless portfolio and use no arbitrage method to value this put option. Risk free rate is 3% per annum, continuously compounded.
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price...
Assume risk-free rate is 5% per annum continuously compounded. Use Black-Scholes formula to find the price the following options: European call with strike price of $72 and one year to maturity on a non-dividend-paying stock trading at $65 with volatility of 40%. European put with strike price of $65 and one year to maturity on a non-dividend-paying stock trading at $72 with volatility of 40%
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price...
Price a European call option on non-dividend paying stock by using a binomial tree. Stock price is €50, volatility is 26% (p.a.), the risk-free interest rate is 5% (p.a. continuously compounded), strike is € 55, and time to expiry is 6 months. How large is the difference between the Black-Scholes price and the price given by the binomial tree?
A non-dividend paying stock price is $100, the strike price is $100, the risk-free rate is...
A non-dividend paying stock price is $100, the strike price is $100, the risk-free rate is 6%, the volatility is 15% and the time to maturity is 3 months which of the following is the price of an American Call option on the stock. For full credit I expect each step of the calculations tied to the correct formulas.
The price of a European call option on a non-dividend-paying stock with a strike price of...
The price of a European call option on a non-dividend-paying stock with a strike price of $50 is $6. The stock price is $51, the continuously compounded risk-free rate (all maturities) is 6% and the time to maturity is one year. What is the price of a one-year European put option on the stock with a strike price of $50? a)$9.91 b)$7.00 c)$6.00 d)$2.09
When the non-dividend paying stock price is $20, the strike price is $20, the risk-free rate...
When the non-dividend paying stock price is $20, the strike price is $20, the risk-free rate is 6%, the volatility is 20% and the time to maturity is three months. Work the problem out how you would do not use excel (a) What is the price of a European put option on the stock using BSM model? (b) At what stock price the seller of the European put will break even