Question

Suppose security C is expected to be worth $800 if the economy is weak and $300...

Suppose security C is expected to be worth $800 if the economy is weak and $300 if the economy is strong in one year (with equal probabilities). Currently, the price of the security is $500.

Compute possible rates of return for the security over the coming year.

Compute expected rate of return of the security

Find range for possible values o returns

Suppose that on average returns of other risky securities in the market fluctuate in the range of ± 25% around their respective means. Based on your answer in c) should security C be considered more/less risky than the average?

Think again – is security C more/less risky than the average?

Homework Answers

Answer #1

Possible return if economy is WEAK

= 800- 500/ 500 = 60%

Possible return on security C if economy is STRONG

=300-500/500 = -40%

Expected rate of return of the security = 60%*(0.5) + (-40%)*(0.5)= 10%

Range for possible values = Maximum value - Minimum value

= 60%- (-40%)

= 100%

Standard deviation formula =   

Therefore, Standard deviation =   ±50%

Since standard deviation of security C is higher than average, it is MORE RISKY than average.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 72. Suppose a risky security pays an average cash flow of $100 in one year....
Question 72. Suppose a risky security pays an average cash flow of $100 in one year. The risk-free rate is 5%, and the expected return on the market index is 13%. If the returns on this security are high when the economy is strong and low when the economy is weak, but the returns vary by only half as much as the market index, then the price for this risky security is closest to: A. 88 B. 92 C. 93...
You must allocate your wealth between two securities. Security 1 offers an expected return of 10%...
You must allocate your wealth between two securities. Security 1 offers an expected return of 10% and has a standard deviation of 30%. Security 2 offers an expected return of 15% and has a standard deviation of 50%. The correlation between the returns on these two securities is 0.25. a. Calculate the expected return and standard deviation for each of the following portfolios, and plot them on a graph: % Security 1 % Security 2 E(R) Standard Deviation 100 0...
Suppose we have the following information:               Security         Amount invested      Expected Return  &n
Suppose we have the following information:               Security         Amount invested      Expected Return      Beta               Stock A         $2,000                         7%                        0.70               Stock B            4,000                        10                          0.85               Stock C            6,000                        13                          1.10               Stock D            8,000                        16                          1.30 What is the expected return on this portfolio? What is the beta of this portfolio? Does this portfolio have more or less systematic risk than an average asset?
Suppose you own a portfolio with two securities. Security A has an expected return of 13.4%...
Suppose you own a portfolio with two securities. Security A has an expected return of 13.4% and a standard deviation of 55% per year. Security B has an expected return of 9.3% and a standard deviation of 32% per year. Considering that your portfolio is composed of 35% of Security A and 65% of Security B, and that the correlation between their returns is .25, what is the standard deviation of your portfolio? Select one: a. 31.68% b. 40.05% c....
You own a portfolio consisting of the securities listed below. The expected return for each security...
You own a portfolio consisting of the securities listed below. The expected return for each security is as shown. What is the expected return on the portfolio? Number Price Expected of shares per share Return A 250 $       15.00 11.20% B 300 $       27.00 16.40% C 500 $       38.00 8.70% D 100 $         9.00 24.50% Select one: a. 12.0% to 13.0% b. Less than 10.0% c. 10.0% to 11.0% d. 11.0% to 12.0% e. More than 13.0%
Expected returns Stocks A and B have the following probability distributions of expected future returns: Probability...
Expected returns Stocks A and B have the following probability distributions of expected future returns: Probability A B 0.1 -12% -33% 0.3 6 0 0.3 16 20 0.2 23 26 0.1 36 40 A. Calculate the expected rate of return, rB, for Stock B (rA = 13.60%.) Do not round intermediate calculations. Round your answer to two decimal places. _______ % B. Calculate the standard deviation of expected returns, ?A, for Stock A (?B = 19.56%.) Do not round intermediate...
Remember, the expected value of a probability distribution is a statistical measure of the average (mean)...
Remember, the expected value of a probability distribution is a statistical measure of the average (mean) value expected to occur during all possible circumstances. To compute an asset’s expected return under a range of possible circumstances (or states of nature), multiply the anticipated return expected to result during each state of nature by its probability of occurrence. Consider the following case: Ethan owns a two-stock portfolio that invests in Blue Llama Mining Company (BLM) and Hungry Whale Electronics (HWE). Three-quarters...
2. Statistical measures of stand-alone risk Remember, the expected value of a probability distribution is a...
2. Statistical measures of stand-alone risk Remember, the expected value of a probability distribution is a statistical measure of the average (mean) value expected to occur during all possible circumstances. To compute an asset’s expected return under a range of possible circumstances (or states of nature), multiply the anticipated return expected to result during each state of nature by its probability of occurrence. Consider the following case: James owns a two-stock portfolio that invests in Happy Dog Soap Company (HDS)...
Statistical measures of stand-alone risk Remember, the expected value of a probability distribution is a statistical...
Statistical measures of stand-alone risk Remember, the expected value of a probability distribution is a statistical measure of the average (mean) value expected to occur during all possible circumstances. To compute an asset’s expected return under a range of possible circumstances (or states of nature), multiply the anticipated return expected to result during each state of nature by its probability of occurrence. Consider the following case: James owns a two-stock portfolio that invests in Celestial Crane Cosmetics Company (CCC) and...
4. Statistical measures of standalone risk Remember, the expected value of a probability distribution is a...
4. Statistical measures of standalone risk Remember, the expected value of a probability distribution is a statistical measure of the average (mean) value expected to occur during all possible circumstances. To compute an asset’s expected return under a range of possible circumstances (or states of nature), multiply the anticipated return expected to result during each state of nature by its probability of occurrence. Consider the following case: James owns a two-stock portfolio that invests in Blue Llama Mining Company (BLM)...