Question

Suppose that the current futures price is 30 and that it will move either up to...

Suppose that the current futures price is 30 and that it will move either up to 33 or down to 28 over the next month. The risk free rate is 6% per annum (with continuous compounding). Consider a one-month call option on the futures contract with a strike price of 29. What is the price of this option according to a one-step binomial tree model?

Group of answer choices

a- 1.592

b- 4.0

c- 2.0

d- 1.72

Homework Answers

Answer #1

ANSWER IN THE IMAGE ((YELLOW HIGHLIGHTED). FEEL FREE TO ASK ANY DOUBTS. THUMBS UP PLEASE. THUMBS UP PLEASE.

Answer: d. 1.72

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6.6. The futures price of a commodity is $90. Use a three-step tree to value (a)...
6.6. The futures price of a commodity is $90. Use a three-step tree to value (a) a nine-month American call option with strike price $93 and (b) a nine-month American put option with strike price $93. The volatility is 28% and the risk-free rate (all maturities) is 3% with continuous compounding
A 3-month European call on a futures has a strike price of $100. The futures price...
A 3-month European call on a futures has a strike price of $100. The futures price is $100 and the volatility is 20%. The risk-free rate is 2% per annum with continuous compounding. What is the value of the call option? (Use Black-Scholes-Merton valuation for futures options)
Based on the spot price of $26 and the strike price $28 as well as the...
Based on the spot price of $26 and the strike price $28 as well as the fact that the risk-free interest rate is 6% per annum with continuous compounding, please undertake option valuations and answer related questions according to following instructions: Binomial trees: Additionally, assume that over each of the next two four-month periods, the share price is expected to go up by 11% or down by 10%. Use a two-step binomial tree to calculate the value of an eight-month...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is...
Suppose that stock price moves up by 5% (u=1.05) and d=1/u. The current stock price is $50. Dividend is zero. Compute the current value of a European call option with the strike price of $51 in 3 months using both replicating portfolio valuation method and the risk neutral valuation method. The risk free rate is APR 5% with continuous compounding (or, 5% per annum)1.  Draw the dynamics of stock price and option price using the one step binomial tree. 2. Draw...
A stock price is currently $40. It is known that at the end of three months...
A stock price is currently $40. It is known that at the end of three months it will be either $42 or $38. The risk free rate is 8% per annum with continuous compounding. What is the value of a three-month European call option with a strike price of $39? In three months: S0 = $40 X = $39, r = 8% per annum with continuous compounding. Use one step binomial model to compute the call option price. In particular,...
The current price of a non-dividend paying stock is $90. Use a two-step binomial tree to...
The current price of a non-dividend paying stock is $90. Use a two-step binomial tree to value a European call option on the stock with a strike price of $88 that expires in 6 months. Each step is 3 months, the risk free rate is 5% per annum with continuous compounding. What is the option price when u = 1.2 and d = 0.8? Assume that the option is written on 100 shares of stock.
Consider a one-step binomial tree on stock with a current price of $200 that can go...
Consider a one-step binomial tree on stock with a current price of $200 that can go either up to $230 or down to $170 in 2 years. The stock does not pay dividend. Continuously compounding interest rate is 5%. Use the tree to compute the delta of a 2-year $210-strike European call option on the stock.
Consider a one-step binomial tree on stock with a current price of $200 that can go...
Consider a one-step binomial tree on stock with a current price of $200 that can go either up to $230 or down to $170 in 2 years. The stock does not pay dividend. Continuously compounding interest rate is 5%. Use the tree to compute the value of a 2-year $210-strike European call option on the stock.
Consider a one-step binomial tree on stock with a current price of $200 that can go...
Consider a one-step binomial tree on stock with a current price of $200 that can go either up to $230 or down to $170 in 2 years. The stock does not pay dividend. Continuously compounding interest rate is 5%. Use the tree to compute the delta of a 2-year $210-strike European call option on the stock.
Consider a one-step binomial tree on stock with a current price of $200 that can go...
Consider a one-step binomial tree on stock with a current price of $200 that can go either up to $230 or down to $170 in 2 years. The stock does not pay dividend. Continuously compounding interest rate is 5%. Compute the payoff of a 2-year $210-strike European call option on the stock if the stock price ends up at the $230 node of the tree in 2 years.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT