Compare the monthly payments and total loan costs for the following pairs of loan options. Assume that both loans are fixed rate and have the same closing costs. You need a $80,000 loan. Option 1: a 30-year loan at an APR of7.15%. Option 2: a 15-year loan at an APR of 6.75%. Find the monthly payment for each option.
The monthly payment for option 1 is $----
The monthly payment for option 2 is $----
(Do not round until the final answer. Then round to the nearest cent as needed.)
Option 1
Information provided:
Present value= $80,000
Time= 30 years*12 = 360 months
Interest rate= 7.15%/12= 0.5958% per month
The monthly payment is calculated by entering the below in a financial calculator:
PV= -80,000
N= 360
I/Y= 0.5958
Press the CPT key and PMT to compute the monthly payment.
The value obtained is 725.79.
Therefore, the amount of monthly payment is $725.79.
Option 2
Information provided:
Present value= $80,000
Time= 15 years*12 = 180 months
Interest rate= 6.75%/12= 0.5625% per month
The monthly payment is calculated by entering the below in a financial calculator:
PV= -80,000
N= 180
I/Y= 0.5625
Press the CPT key and PMT to compute the monthly payment.
The value obtained is 707.93.
Therefore, the amount of monthly payment is $707.93.
Get Answers For Free
Most questions answered within 1 hours.