You have $12,013.05 in a brokerage account, and you plan to deposit an additional $3,500 at the end of every year until your account totals $100,000. You expect to earn 12.2 percent annually on the account. How long will it take to reach your goal?
a. 7yrs
b.8yrs
c.6
d.9
e.10
We use the formula:
A=P(1+r/100)^n
where
A=future value
P=present value
r=rate of interest
n=time period.
Future value of 12,013.05=12,013.05*(1.122)^n
Also:
Future value of annuity=Annuity[(1+rate)^time period-1]/rate
=3500[(1.122)^n-1]/0.122
Hence 100,000=12,013.05*(1.122)^n+3500[(1.122)^n-1]/0.122
100,000=12,013.05*(1.122)^n+28688.5246[(1.122)^n-1]
100,000=12,013.05*(1.122)^n+28688.5246*(1.122)^n-28688.5246
(100,000+28688.5246)=(1.122)^n[12,013.05+28688.5246]
(100,000+28688.5246)/(12,013.05+28688.5246)=(1.122)^n
3.16175789=(1.122)^n
Taking log on both sides;
n*log 1.122=log 3.16175789
n=log 3.16175789/log 1.122
=10 years
Get Answers For Free
Most questions answered within 1 hours.