Question

Write a Matlab R program that plots the ramp response of the values of the voltage...

Write a Matlab R program that plots the ramp response of the values of the voltage across the capacitor for any arbitrary value between 1 and 10,000 Ohms resistor (R), 0.1 to 3 Henry inductor (L), and capacitor (C) values between 0.000001 and 0.1 Farad of a series resistor, inductor, and capacitor (RLC) circuit. Suggestions 1. Determine the transfer functions H(s) of the series RLC circuit where the output is capacitor voltage. 2. Determine the rational functions defined by the Laplace transform of e(t) = tu(t) multiplied by the transfer functions H(s). 3. The inverse Laplace transform of the above rational functions determines the time domain ramp responses.

Homework Answers

Answer #1

MATLAB code is given below in bold letters.

clc;
close all;
clear all;

% define R L and C values
R = 1e3;
L = 1;
C = 10e-6;

% Transfer function from the input voltage to the output capacitor voltage
s = tf('s');
disp('Transfer function from input voltage to the output capacitor voltage');
T = minreal(1/(s*C)/(R+L*s+1/(s*C)))
% Now define the laplace transform of the input R(s)
R = 1/s^2;

% Now the output in laplace domain
Y = T*R;

% Now obtain the input response using impulse command.
figure;impulse(Y);grid on;title('Unit ramp response of the system');

RESULT:

Transfer function from input voltage to the output capacitor voltage

Transfer function:
1e005
--------------------
s^2 + 1000 s + 1e005

Unit ramp response is plotted below.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Modell and solve the RLC series circuit of resistor(R) of 10 ohms, inductor (L) of Henry...
Modell and solve the RLC series circuit of resistor(R) of 10 ohms, inductor (L) of Henry and capacitance of 10 micro-farad are attached
A resistor R = 4 ohms, a capacitor C = 1F and an inductor L =...
A resistor R = 4 ohms, a capacitor C = 1F and an inductor L = 4H are connected in series to an alternating current voltage source V (t) = 100cos(t) Volts. Determine the charge on the capacitor and the current on the circuit at the time, if originally the capacitor is discharged, and the current is 6A.
A series L-C-R circuit contains a 5.00 μF capacitor, a 0.900 H coil, a 190 Ohms...
A series L-C-R circuit contains a 5.00 μF capacitor, a 0.900 H coil, a 190 Ohms resistor, and a generator producing a maximum voltage of 30.0 V at an angular frequency of 220 rad/s. a. Calculate the impedance of the circuit. b. Calculate the maximum current in the circuit. c. Calculate the maximum voltage drop across the resistor, the capacitor, and the inductor. d. Does the current in this circuit lead the voltage or does the voltage lead the current?...
In an LRC series circuit, the components have the following Values: L=0.4 H, C=600 μF, R=200...
In an LRC series circuit, the components have the following Values: L=0.4 H, C=600 μF, R=200 Ω, V=30 V and frequency 1.5 kHz. Calculate the impedance of the circuit Calculate the maximum voltage across the resistor, the inductor and the capacitor
[Series circuit analogue: RLC circuit with nonzero resistance R and nonzero voltage E(t) as forcing function...
[Series circuit analogue: RLC circuit with nonzero resistance R and nonzero voltage E(t) as forcing function is analogous to a forced damped spring/mass system.] Consider the RLC circuit with inductance L = 8 henrys, resistance R = 16 ohms, capacitance C = 0.025 farads, and voltage E(t) = 17 cos 2t volts. (a) Find the current in the circuit for t > 0, given that at time t = 0 the capacitor is uncharged and there is no current flowing....
The followings are parameters of a RLC-series circuit. Use the given information to answer. R =...
The followings are parameters of a RLC-series circuit. Use the given information to answer. R = 7.5 Ω L = 8.2 x 10-3 H C = 1.0 x 10-5 F Frequency f = 450 Hz Peak voltage V0 = 15V Find the following: (a) rms voltage across the resistor (b) rms voltage across the inductor (c) rms voltage across the capacitor (d) power factor of the circuit (e) phase angle (f) power dissipated (g) resonant frequency of the circuit
An L-R-C circuit has L = 4.5 H, R = 80 Ω, C = 45 μF...
An L-R-C circuit has L = 4.5 H, R = 80 Ω, C = 45 μF (μF = 10-6 F) connected in series to the voltage source with an amplitude 45 V and frequency 50 Hz. Find the instantaneous values at t = 6 ms (ms = 10-3 s) of the voltages (in V) across the voltage source v, resistor vR, inductor vL, and capacitor vC
A series RLC circuit is driven by a voltage source which provides a time varying emf...
A series RLC circuit is driven by a voltage source which provides a time varying emf of ϵ = 100cos(8000t)V and consists of an resistor, capacitor and inductor with values of R = 100 Ohms, L = 1.00 mH, C = 1.00 µF a) What is the phase constant of the current? Enter your answer in radians. b) When the potential across the resistor is 0 V, what is the potential across the inductor? You might find a phasor diagram...
A solenoid with inductance L = 2.0 H is connected in series with a resistor R...
A solenoid with inductance L = 2.0 H is connected in series with a resistor R = 10 ohms, as well as an AC power supply that is providing current I(t) = I0 * cos( 2π * f * t ). The current has an amplitude of 2 A and a frequency of 60 Hz. a) Draw a diagram of the circuit. b) At time t = 0 seconds, what is the change in voltage across both the inductor and...
Write a MATLAB function and test bench script code to solve the above simple RL/RC circuits...
Write a MATLAB function and test bench script code to solve the above simple RL/RC circuits by following the instructions noted below. The input signal and impulse response generation should be done in the function. The test bench script should be used only to call the function and for signal plotting purposes. No plotting should be done inside the function itself. Name your function L2_C Instructions: Input voltage ,x(t), can be AC or DC. Consider a variable ‘w1’ which can...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT