Question

Derive the cost function from the following CES production function y = A *(α*L^p+ (1-α)*K^ρ)^(1/ρ)

Derive the cost function from the following CES production function

y = A *(α*L^p+ (1-α)*K^ρ)^(1/ρ)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider the following production function: Y=F(A,L,K)=A(K^α)(L^(1-α)) where α < 1. a. Derive the Marginal Product...
1. Consider the following production function: Y=F(A,L,K)=A(K^α)(L^(1-α)) where α < 1. a. Derive the Marginal Product of Labor(MPL). b. Show that this production function exhibit diminishing MPL. c. Derive the Marginal Production of Technology (MPA). d. Does this production function exhibit diminishing MPA? Prove or disprove
Derive the log-run cost function assuming that the production function s given by q = K+L?
Derive the log-run cost function assuming that the production function s given by q = K+L?
Derive the long-run cost function assuming that the production function s given by q = K+L?
Derive the long-run cost function assuming that the production function s given by q = K+L?
Consider the following production function: y = F(K, L, D) = TK^αL^β/D^α+β−1 where K, L and...
Consider the following production function: y = F(K, L, D) = TK^αL^β/D^α+β−1 where K, L and D represent capital, labor and land inputs respectively. Denote by s the capital-labor ratio (s = K L ). T captures technological progress and is assumed constant here. α and β are two parameters. (a) (2.5 marks) Does y exhibits constant returns to scale? Show your work. (b) (2.5 marks) Find the marginal product of capital (MPK), the marginal product of labor (MP L),...
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and...
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and A > 0. 1. The Cobb-Douglas function can be either increasing, decreasing or constant returns to scale depending on the values of the exponents on L and K. Prove your answers to the following three cases. (a) For what value(s) of α is F(L,K) decreasing returns to scale? (b) For what value(s) of α is F(L,K) increasing returns to scale? (c) For what value(s)...
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
Consider the following Cobb-Douglas production function: y(K,L) = 2K^(0.4)*L^(0.6), where K denotes the amount of capital...
Consider the following Cobb-Douglas production function: y(K,L) = 2K^(0.4)*L^(0.6), where K denotes the amount of capital and L denotes the amount of labour employed in the production process. a) Compute the marginal productivity of capital, the marginal productivity of labour, and the MRTS (marginal rate of technical substitution) between capital and labour. Let input prices be r for capital and w for labour. A representative firm seeks to minimize its cost of producing 100 units of output. b) By applying...
1. Using the Cobb-Douglas production function: Yt = AtKt1/3Lt2/3 If K = 27, L = 8...
1. Using the Cobb-Douglas production function: Yt = AtKt1/3Lt2/3 If K = 27, L = 8 A = 2, and α = 1/3, what is the value of Y? (For K and L, round to the nearest whole number) ______ 2. If Y = 300, L = 10, and α = 1/3, what is the marginal product of labor? ______ 3. Using the values for Y and α above, if K = 900, what is the marginal product of capital?...
Firm A’s production function and cost line are given by:Q=Q(L,K)=2 L^(1/2) K^(1/2) (The production function)...
Firm A’s production function and cost line are given by:Q=Q(L,K)=2 L^(1/2) K^(1/2) (The production function)?L+?=30000 (The cost line of firm A):?L is the amount of labor hired.?K is the amount of capital hired.??p_L or the price of labor is 1 dollar per unit.??p_K or the price of capital is 1 dollars per unit.C or cost (think of it as the firm’s budget) is 30000 dollars.How much labor and capital should this firm optimally hire?