Question:
What is the monopolist's profit maximized optimal price, based on the demand curve? (Use calculus to solve this problem)
Demand curve : Q = 450 - 10p
Note: Marginal cost was not given in this question and that's why I am struggling. The answer should be price of $30 but I don't know how to solve this problem. Can you please explain to me how to calculate it?
For the market price to be $30, the marginal cost must be $15
This implies that while quantity is Q = 450 - 10P, Revenue is PQ = 450P - 10P^2 and total cost is 15Q or 15(450 - 10P). This gives cost = 6750 - 150P
Profit = Revenue - cost
= 450P - 10P^2 - 6750 + 150P
= 600P - 10P^2 - 6750
Profit is maximum when its derivative is 0
600 = 20P
P = 600/20 = 30
Hence monopolist's profit maximized optimal price, based on the demand curve is $30
A reference figure is shown below with inverse demand P = 45 - 0.1Q and MR = 45 - 0.2Q. MC is $15.
Get Answers For Free
Most questions answered within 1 hours.