Question

Jason always eats 2 slices of pizza with each beer. What would be an appropriate utility...

Jason always eats 2 slices of pizza with each beer. What would be an appropriate utility function to describe Jason's preferences? Draw a set of indifference curves for Jason. What would happen to Jack's indifference curves if the price of pizza were to go up?

Homework Answers

Answer #1

Given that Jason always eats 2 slices of pizza (P) with each beer (B) which means the two goods are perfect complements and are consumed together such that P/B = 2/1. Hence the utility function is U = min(2B, P)

The indifference curves are all L shaped with a kink at 2B = P

There is no substitution effect of a higher price of pizza but the income effect will indicate that the consumption of both pizza and beer will decrease.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Quantity Total Utility for Beer Total Utility for Pizza Marginal Utility for Beer Marginal Utility for...
Quantity Total Utility for Beer Total Utility for Pizza Marginal Utility for Beer Marginal Utility for Pizza Marginal Utility per $ for Beer (a) Marginal Utility per $ for Pizza (a) Marginal Utility per $ for Pizza (b) 0 0 0 — --- 1 8 6 2 15 11 3 21 15 4 26 18 5 30 20 6 33 21 On Tuesday night you have $10, and head to Vitos after another arduous Economics exam. A slice of pizza...
Homer consumes only donuts and beer. When he consumes less than 10 beers, Homer would gladly...
Homer consumes only donuts and beer. When he consumes less than 10 beers, Homer would gladly drink one more. After drinking 10 beers, Homer is so drunk that he does not notice any additional bottle he drinks (that is, the benefit of an additional bottle of beer is zero). Drinking more than 17 beers is beyond the processing capability of Homer’s liver and any additional bottle makes him sick (beer is no longer a “good” for Homer). Homer’s preferences for...
3. Nora enjoys fish (F) and chips(C). Her utility function is U(C, F) = 2CF. Her...
3. Nora enjoys fish (F) and chips(C). Her utility function is U(C, F) = 2CF. Her income is B per month. The price of fish is PF and the price of chips is PC. Place fish on the horizontal axis and chips on the vertical axis in the diagrams involving indifference curves and budget lines. (a) What is the equation for Nora’s budget line? (b) The marginal utility of fish is MUF = 2C and the Marginal utility of chips...
Question 1 If you are trying to make yourself as happy as you can be given...
Question 1 If you are trying to make yourself as happy as you can be given the constraints that you face, you are effectively: Select one: a. trying to find the intersection point between two budget constraints. b. trying to find the point on the budget constraint that is on the highest indifference curve. c. trying to find the point where the budget constraint and an indifference curve intersect. d. trying to find the point on an indifference curve that...
Let Antonio and Kate’s preferences be represented by the utility functions, uAntonio(x1, x2) = 9((x1)^2)(x2) and...
Let Antonio and Kate’s preferences be represented by the utility functions, uAntonio(x1, x2) = 9((x1)^2)(x2) and uKate(x1, x2) = 17(x1)((x2)^2), where good 1 is Starbursts and good 2 is M&M’s. Antonio’s endowment is eA = (24, 0) and Kate’s endowment is eK = (0, 200). Antonio and Kate will exchange candy with each other using prices p1 and p2, where p1 is the price of one starburst and p2 is the price of one M&M. a) Determine Antonio’s and Kate’s...
1. The lump sum principle says...? All taxes make a consumer equally unhappy A tax on...
1. The lump sum principle says...? All taxes make a consumer equally unhappy A tax on one good make a consumer happier than an equivalent revenue lump sum tax. A tax on one good make a consumer less happy than an equivalent revenue lump sum tax. Tax revenues should only be used as a lump sum, not split up among many projects A tax on one good should be kept small. 2. For normal goods…? A change in income causes...
1. Al Einstein has a utility function that we can describe by u(x1, x2) = x21...
1. Al Einstein has a utility function that we can describe by u(x1, x2) = x21 + 2x1x2 + x22 . Al’s wife, El Einstein, has a utility function v(x1, x2) = x2 + x1. (a) Calculate Al’s marginal rate of substitution between x1 and x2. (b) What is El’s marginal rate of substitution between x1 and x2? (c) Do Al’s and El’s utility functions u(x1, x2) and v(x1, x2) represent the same preferences? (d) Is El’s utility function a...
Homer is a deeply committed lover of chocolate. Assume his preferences are Cobb-Douglas over chocolate bars...
Homer is a deeply committed lover of chocolate. Assume his preferences are Cobb-Douglas over chocolate bars (denoted by C on the x-axis) and a numeraire good (note: we use the notion of a numeraire good to represent spending on all other consumption goods – in this example, that means everything other than chocolate bars – its price is always $1). a. Homer earns a salary that provides him a monthly income of $360. Last month, when the price of a...
Total utility can be objectively measured in numbers that indicate usefulness or benefit to the consumer....
Total utility can be objectively measured in numbers that indicate usefulness or benefit to the consumer. ____ 2. Consumers should purchase quantities of a good to the point where MU > P. ____ 3. Voluntary exchange requires that there must be mutual gain. ____ 4. Points along a budget line represent the maximum combinations of two commodities that a consumer can afford. ____ 5. The budget line represents a consumer's preferences for a commodity. ____ 6. A change in consumer...
What is the chance a randomly selected employee would get a non-zero bonus amount? What is...
What is the chance a randomly selected employee would get a non-zero bonus amount? What is the chance a randomly selected employee would get at least $6000? What is the expected bonus value of the bonus amounts? What are the variance and standard deviation of the bonus amount? Binomial Suppose according to past data for a small boutique, about 30% of the customers who walk into the store purchase at least one item. Today 10 individual customers walked into the...