Question

III. A production process uses two inputs, labor and capital which can be written as: Q...

III. A production process uses two inputs, labor and capital which can be written as: Q = 5LK, MPL = 5K and MPK = 5L 'w' = $150 and 'r' = $1000. Find the least cost combination of L and K when output Q = 1000 tons per day. What is the total cost of producing 1000 tons per day using this least cost combination?

Homework Answers

Answer #1

The least cost combination of L and K will occur when the ratio of prices of labor and capital will be equal to the marginal rate of technical substitution of one input for another.

Price ratio = PL/PK = w/r =150/1,000 = 0.15.

Now we have to find the combination of L and K at which MRTS=0.15

MRTS= MPL/MPK = 5K/5L =0.15

K=0.15L

Output is Q=1000, Therefore

5LK = 1000

5L(0.15L) = 1000

0.75L2=1000

L2 =1333.33

L = = 36.51 units.

K = 0.15(36.51) = 5.48 units.

The total cost of producing 1000 tons per day using the least costt combination is:

C = PLL + PKK

C = 150(36.51) + 1,000(5.48)

C= $5,476.50 + $5,480

C = $10,956.50

Therefore, the total cost of producing 1000 tons per day is $10,956.50

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A firm uses capital and labor to produce output according to the production ? = 4√??...
A firm uses capital and labor to produce output according to the production ? = 4√?? (a) Find the marginal product of labor (MPL) and marginal product of capital (MPK). (b) If the wage w=$1/labor-hr. and the rental rate of capital r=$4/machine-hr., what is the least expensive way to produce 16 units of output? (c) What is the minimum cost of producing 16 units? (d) Show that for any level of output, q, the minimum cost of producing q is...
Consider a firm which has the following production function Q=f(L,K)=4?LK (MPL=2?(K/L) and MPK=2?(L/K). (a) If the...
Consider a firm which has the following production function Q=f(L,K)=4?LK (MPL=2?(K/L) and MPK=2?(L/K). (a) If the wage w= $4 and the rent of capital r=$1, what is the least expensive way to produce 16 units of output? (That is, what is the cost-minimizing input bundle (combination) given that Q=16?) (b) What is the minimum cost of producing 16 units? (c) Show that for any level of output Q, the minimum cost of producing Q is $Q.
A firm uses two inputs, capital K and labor L, to produce output Q that can...
A firm uses two inputs, capital K and labor L, to produce output Q that can be sold at a price of $10. The production function is given by Q = F(K, L) = K1/2L1/2 In the short run, capital is fixed at 4 units and the wage rate is $5, 1. What type of production function is F(K, L) = K1/2L1/2 ? 2. Determine the marginal product of labor MPL as a function of labor L. 3. Determine the...
a firm produces a product with labor and capital as inputs. The production function is described...
a firm produces a product with labor and capital as inputs. The production function is described by Q=LK. the marginal products associated with this production function are MPL=K and MPK=L. let w=1 and r=1 be the prices of labor and capital, respectively a) find the equation for the firms long-run total cost curve curve as a function of quantity Q b) solve the firms short-run cost-minimization problem when capital is fixed at a quantity of 5 units (ie.,K=5). derive the...
An electronics plant’s production function is Q = L 2K, where Q is its output rate,...
An electronics plant’s production function is Q = L 2K, where Q is its output rate, L is the amount of labour it uses per period, and K is the amount of capital it uses per period. (a) Calculate the marginal product of labour (MPL) and the marginal product of capital (MPK) for this production function. Hint: MPK = dQ/dK. When taking the derivative with respect to K, treat L as constant. For example when Q = L 3K2 ,...
Suppose Cool T-Shirts Co produces T-shirts and employs labor (L) and capital (K) in production. Suppose...
Suppose Cool T-Shirts Co produces T-shirts and employs labor (L) and capital (K) in production. Suppose production function for Cool T-Shirts Co is Q=K*L, and Cool T-Shirts Co wants to produce Q=625. Suppose marginal product of labor (MPL) and marginal product of capital (MPK) are as follows: MPL=K and MPK=L. Suppose Cool T-Shirts Co pays workers $10 per hour (w=$10) and interest rate on capital is $250 (r=250). What is the cost-minimizing input combination if Cool T-Shirts Co wants to...
Assume that a profit maximizer firm uses only two inputs, labor (L) and capital (K), and...
Assume that a profit maximizer firm uses only two inputs, labor (L) and capital (K), and its production function is f(K,L) = K2 x L. Its MRTS of capital for labor (i.e., how many units of capital does he want to give up one unit of labor) is given by MRTS = MPL / MPK = K / (2L) a) Assume that this firm wants to spend $300 for the inputs (total cost of factors of production). The wage per...
The firm’s production function is given by q = 4K0.5L0.5, where q denotes the output (measured...
The firm’s production function is given by q = 4K0.5L0.5, where q denotes the output (measured as the number of research reports per month). The firm hires people (“labor”, measured in hours of work) and rents office space (“capital”, measured in sq. feet). The marginal product of labor is given by MPL = 2K0.5L–0.5 and the marginal product of capital is given by MPK = 2L0.5K–0.5. 1. Find the cost-minimizing levels of capital (K*) and labor (L*) required to produce...
A firm produces an output with the production function Q=K*L2, where Q is the number of...
A firm produces an output with the production function Q=K*L2, where Q is the number of units of output per hour when the firm uses K machines and hires L workers each hour. The marginal product for this production function are MPk =L2 and MPl = 2KL. The factor price of K is $1 and the factor price of L is $2 per hour. a. Draw an isoquant curve for Q= 64, identify at least three points on this curve....
A hat manufacturing firm has the following production function with capital and labor being the inputs:...
A hat manufacturing firm has the following production function with capital and labor being the inputs: Q = min(5L,3K) (it has a fixed-proportions production function). If w is the cost of a unit of labor and r is the cost of a unit of capital, derive the firm’s optimal inputs, long-run total cost curve, average cost curve, and marginal cost curve in terms of the input prices and Q. b) A firm has the linear production function Q = 2L...