Question

Consider the following Cobb-Douglas Production Function for Mauricio’s Machines Inc, a U.S. manufacturer of electronic precision...

  1. Consider the following Cobb-Douglas Production Function for Mauricio’s Machines Inc, a U.S. manufacturer of electronic precision tools:

Q=(L*0.4)+(K*0.7)

  1. Explain why a Cobb-Douglas production is indeed a representation of reality?
  1. Based on the function above, is Mauricio’s Machines’ business experiencing Economies of Scale or Diseconomies of Scale? Please explain your answer.

this is all the provided information so please answer the question

Homework Answers

Answer #1

(a) The Cobb DOuglas production structure provides a comprehensive way to explain the production function and it is convenient to use.

(b) To check whether the business is experiencing economies of scale or diseconomies of scale, we need to look at the the degree of homegeneity of the production function.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the Cobb-Douglas production function for Mabel’s factory Q = (L0.4) * (K0.7) a) Based on...
Given the Cobb-Douglas production function for Mabel’s factory Q = (L0.4) * (K0.7) a) Based on the function above, does Mabel’s factory experiencing economies or diseconomies of scale? Explain. b) If the manager wished to raise productivity by 50% and planned to increase capital by 25%, how much would she have to increase her labor to reach that desired production level?
Cobb-Douglas Production Function & Cost of Production A firm’s production function is given as – q...
Cobb-Douglas Production Function & Cost of Production A firm’s production function is given as – q = 2K0.4N0.6 What kind of returns to scale does this production technology exhibit? Justify your answer. Find out the expression for the marginal product of labor. Find out the expression for the marginal product of capital. Find out the expression for MRTS.
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This...
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This function is widely used in economic research. Using the function, show the following: a. The production function in Equation 6.7 is a special case of the Cobb-Douglas. b. If a+b=1, a doubling of K and L will double q. c. If a +b < 1, a doubling of K and L will less than double q. d. If a +b > 1, a doubling...
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and...
Consider the Cobb-Douglas production function F (L, K) = (A)(L^α)(K^1/2) , where α > 0 and A > 0. 1. The Cobb-Douglas function can be either increasing, decreasing or constant returns to scale depending on the values of the exponents on L and K. Prove your answers to the following three cases. (a) For what value(s) of α is F(L,K) decreasing returns to scale? (b) For what value(s) of α is F(L,K) increasing returns to scale? (c) For what value(s)...
2. Assume that a manufacturer faces a Cobb-Douglas production function, q=40K^0.5L^0.5 where q is output per...
2. Assume that a manufacturer faces a Cobb-Douglas production function, q=40K^0.5L^0.5 where q is output per period, L is labor, K is capital. The market price of labor (w) is $50 per unit and the price of capital (r) is $200 per unit. a. Specify and illustrate graphically the short-run MPl and APl for L = 5 to 30 units (assume that the level of capital is 25; use increments of 5 units of labor). Is this firm operating in...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C =...
1. Consider the Cobb-Douglas production function Q = 6 L^½ K^½ and cost function C = 3L + 12K. (For some reason variable "w" is not provided) a. Optimize labor usage in the short run if the firm has 9 units of capital and the product price is $3. b. Show how you can calculate the short run average total cost for this level of labor usage? c. Determine “MP per dollar” for each input and explain what the comparative...
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
(a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale....
a) Show that the following Cobb-Douglas production function, f(K,L) = KαL1−α, has constant returns to scale. (b) Derive the marginal products of labor and capital. Show that you the MPL is decreasing on L and that the MPK is decreasing in K.
The Cobb-Douglas production function for an automobile manufacturer is f(x, y) = 100x0.6y0.4, where x is...
The Cobb-Douglas production function for an automobile manufacturer is f(x, y) = 100x0.6y0.4, where x is the number of units of labor and y is the number of units of capital. Estimate the average production level if the number of units of labor x varies between 300 and 350 and the number of units of capital y varies between 375 and 400. (Round your answer to two decimal places.)
2. Consider a Cobb-Douglas production function Q = A . L^a . K^b . Answer the...
2. Consider a Cobb-Douglas production function Q = A . L^a . K^b . Answer the following in terms of L, K, a, b (a) What is the marginal product of labour ? (b) What is the marginal product of capital ? (c) What is the rate of technical substitution (RTS L for K)? (d) From the above what is the relation between K L and RT SL,K? (e) What is the relation between ∆ K L ∆RT SL,K (f)...