Question

Cobb-Douglas Production Function & Cost of Production A firm’s production function is given as – q...

Cobb-Douglas Production Function & Cost of Production

  1. A firm’s production function is given as –

q = 2K0.4N0.6

  1. What kind of returns to scale does this production technology exhibit? Justify your answer.
  2. Find out the expression for the marginal product of labor.
  3. Find out the expression for the marginal product of capital.
  4. Find out the expression for MRTS.

Homework Answers

Answer #1

a)

Given production function is Cobb-Douglas. Let us check sum exponents.

Sum of exponents=0.40+0.60=1.0

Since sum is equal to 1, we can say that production function exhibits constant returns to scale (CTS)

b)

Marginal product of labor can be determined by differentiating q with respect to N, we get

MPN=dq/dN=0.6*2K0.4N0.6-1=1.2K0.4N-0.4

c)

Marginal product of capital can be determined by differentiating q with respect to K, we get

MPK=dq/dK=0.4*2K0.4-1N0.6=0.8K-0.6N0.6

d)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A firm’s production is represented by the following Cobb-Douglas function: ? = ?^2/3?^1/3. The rental rate,...
A firm’s production is represented by the following Cobb-Douglas function: ? = ?^2/3?^1/3. The rental rate, r, of capital is given by $200 and the price of labor is $100. a) For a given level of output, what should be the ratio of capital to labor in order to minimize costs? b) How much capital and labor should be used to produce those 300 units? c) What is the minimum cost of producing 300 units? d) What is the short...
A firm’s production is represented by the following Cobb-Douglas function: ? = ?^2/3?^1/3. The rental rate,...
A firm’s production is represented by the following Cobb-Douglas function: ? = ?^2/3?^1/3. The rental rate, r, of capital is given by $200 and the price of labor is $100. a) For a given level of output, what should be the ratio of capital to labor in order to minimize costs? b) How much capital and labor should be used to produce those 300 units? c) What is the minimum cost of producing 300 units? d) What is the short...
33 II) A firm’s production is represented by the following Cobb-Douglas function: ? = ?^1/3 ?^2/3....
33 II) A firm’s production is represented by the following Cobb-Douglas function: ? = ?^1/3 ?^2/3. The rental rate, r, of capital is given by $100 and the price of labor is $200. a. For a given level of output, what should be the ratio of capital to labor in order to minimize costs? b. How much capital and labor should be used to produce those 300 units? c. What is the minimum cost of producing 300 units? d. What...
A firm’s production function is given by Q = 5K1/3 + 10L1/3, where K and L...
A firm’s production function is given by Q = 5K1/3 + 10L1/3, where K and L denote quantities of capital and labor, respectively. Derive expressions (formulas) for the marginal product of each input. Does more of each input increase output? Does each input exhibit diminishing marginal returns? Prove. Derive an expression for the marginal rate of technical substitution (MRTS) of labor for capital. Suppose the price of capital, r = 1, and the price of labor, w = 1.   The...
2. A firm has the following linear production function: q = 5L + 2K a. Does...
2. A firm has the following linear production function: q = 5L + 2K a. Does this firm’s production function exhibit diminishing returns to labor?    b. Does this production function exhibit diminishing returns to capital? c. Graph the isoquant associated with q = 20. d. What is the firm’s MRTS between K and L? e. Does this production technology exhibit decreasing, constant, or increasing returns to scale?
Assume a​ Cobb-Douglas production function of the​ form: q=10L0.09K0.47. What type of returns to scale LOADING......
Assume a​ Cobb-Douglas production function of the​ form: q=10L0.09K0.47. What type of returns to scale LOADING... does this production function​ exhibit? In this​ instance, returns to scale equal ?. ​ (Enter a numeric response using a real number rounded to two decimal​ places.)
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This...
6.7 The production function Q=KaLb where 0≤ a, b≤1 is called a Cobb-Douglas production function. This function is widely used in economic research. Using the function, show the following: a. The production function in Equation 6.7 is a special case of the Cobb-Douglas. b. If a+b=1, a doubling of K and L will double q. c. If a +b < 1, a doubling of K and L will less than double q. d. If a +b > 1, a doubling...
Given the Cobb-Douglas production function for Mabel’s factory Q = (L0.4) * (K0.7) a) Based on...
Given the Cobb-Douglas production function for Mabel’s factory Q = (L0.4) * (K0.7) a) Based on the function above, does Mabel’s factory experiencing economies or diseconomies of scale? Explain. b) If the manager wished to raise productivity by 50% and planned to increase capital by 25%, how much would she have to increase her labor to reach that desired production level?
Given the Cobb-Douglas production function q = 2K 1 4 L 3 4 , the marginal...
Given the Cobb-Douglas production function q = 2K 1 4 L 3 4 , the marginal product of labor is: 3 2K 1 4 L 1 4 and the marginal product of capital is: 1 2K 3 4 L 3 4 . A) What is the marginal rate of technical substitution (RTS)? B) If the rental rate of capital (v) is $10 and the wage rate (w) is $30 what is the necessary condition for cost-minimization? (Your answer should be...
Assuming a Cobb-Douglas production function with constant returns to scale, then, as L rises with K...
Assuming a Cobb-Douglas production function with constant returns to scale, then, as L rises with K and A constant, it will be the case Group of answer choices Both the marginal product of labour and the marginal product of capital will fall Both the marginal product of labour and the marginal product of capital will rise The marginal product of labour will rise and the marginal product of capital will fall The marginal product of labour will fall and the...