Using Boolean algebra, simplify the following Boolean functions.
a. ABC + A’BC + (AB’C)’
b. AB’ + A’B + AB + A’B’
c. A’(A+B) + (B+A)(A+B’)
Create a truth table, Karnaugh map and show the simplified the expression.
a. A’B + B
a. ABC + A’BC + (AB’C)’ = (A+A')BC + (AB’C)’ = (1)BC + (AB’C)’ = BC + (AB’C)’ = BC + (A'+B+C') = B(C+1) + A'+C' = B(1) + A'+C' = B + A' + C' b. AB’ + A’B + AB + A’B’ = A(B’+B) + A’B + A’B’ = A(1) + A’B + A’B’ = A + A’B + A’B’ = A + A’(B + B’) = A + A’(1) = A + A’ = 1 c. A’(A+B) + (B+A)(A+B’) = A’A+A'B + (B+A)(A+B’) = 0+A'B + (B+A)(A+B’) = A'B + (B+A)(A+B’) = A'B + (BA+BB'+AA+AB’) = A'B + (BA+0+AA+AB’) = A'B + BA+AA+AB’ = A'B + BA+A+AB’ = A'B + BA + A(1+B’) = A'B + BA + A(1) = A'B + BA + A = A'B + (B+1)A = A'B + (1)A = A'B + A a. A’B + B
A | B | A’B + B |
---|---|---|
F | F | F |
F | T | T |
T | F | F |
T | T | T |
So, From the truth table we can say that A’B + B = B
Get Answers For Free
Most questions answered within 1 hours.