Question

import java.util.ArrayList; /* Rules:         1. Allow Tester to iterate through all nodes using the...

import java.util.ArrayList;

/*
Rules:
        1. Allow Tester to iterate through all nodes using the in-order traversal as the default.
            This means, in Tester the following code should work for an instance of this class
            called bst that is storing Student objects for the data:

                BinarySearchTree_Lab08<String> bst = new BinarySearchTree_Lab08<String>();
                bst.add("Man");       bst.add("Soda");   bst.add("Flag");
                bst.add("Home");   bst.add("Today");   bst.add("Jack");

                for(String s : bst)
                    System.out.println(s);

        2.   You can not use a size variable to keep track of the number of nodes
*/


/**
* Lab-08: BinarySearchTree Implementation
*
* @author
*
*/

public class BinarySearchTree_Lab08<T> {
   //====================================================================================== Properties
   private Node root;

   //====================================================================================== Constructors
   public BinarySearchTree_Lab08() {

   }

   // Constructor that takes an array of items and populates the tree
   public BinarySearchTree_Lab08(T[] items) {

   }

   //====================================================================================== Methods
   public void add(T data) {   // Implement recursively and do NOT allow duplicates

   }


   // Returns the traversal of this tree as an array
   public ArrayList<T> preOrder_Traversal() {  
       ArrayList<T> data = new ArrayList<T>();
       preOrder_Traversal(root, data);  
       return data;
   }
   private void preOrder_Traversal(Node n, ArrayList<T> data) {
      
   }

   public ArrayList<T> inOrder_Traversal() {  
       ArrayList<T> data = new ArrayList<T>();
       inOrder_Traversal(root, data);  
       return data;
   }
   private void inOrder_Traversal(Node n, ArrayList<T> data) {
      
   }

   public ArrayList<T> postOrder_Traversal() {  
       ArrayList<T> data = new ArrayList<T>();
       postOrder_Traversal(root, data);  
       return data;  
   }
   private void postOrder_Traversal(Node n, ArrayList<T> data) {
      
   }

   public ArrayList<T> breadthFirst_Traversal() {
       return null;
   }


   // Since this is a binary SEARCH tree, you should write
   // an efficient solution to this that takes advantage of the order
   // of the nodes in a BST. Your algorithm should be, on average,
   // O(h) where h is the height of the BST.
   public boolean contains(T data) {
       return false;
   }

   // returns the smallest value in the tree
   // or throws an IllegalStateException() if the
   // tree is empty. Write the recursive version
   public T min() { return min(root); }       // this method is done for you.      
   private T min(Node n) {   // Write this method.
       return null;
   }

   // returns the largest value in the tree
   // or throws an IllegalStateException() if the
   // tree is empty. Write the recursive version
   public T max() { return max(root); }       // this method is done for you.
   private T max(Node n) {   // Write this method.
       return null;
   }

   // Returns whether the tree is empty
   public boolean isEmpty() {
       return false;
   }

   // returns the height of this BST. If a BST is empty, then
   // consider its height to be -1.
   public int getHeight() {
       return -1;
   }


   // returns the largest value of all the leaves
   // If the tree is empty, throw an IllegalStateException()
   // Note, this is different than max as this is the max
   // of all leaf nodes
   public T maxLeaf() {
       return null;
   }

   // counts the number of nodes in this BST
   public int nodeCount() {
       return -1;
   }

   // returns the "level" of the value in a tree.
   // the root is considered level 0
   // the children of the root are level 1
   // the children of the children of the root are level 2
   // and so on. If a value does not appear in the tree, return -1
   // 15
   // / \
   // 10 28
   // \ \
   // 12 40
   // /
   // 30
   // In the tree above:
   // getLevel(15) would return 0
   // getLevel(10) would return 1
   // getLevel(30) would return 3
   // getLevel(8) would return -1
   public int getLevel(T n) {
       return -1;
   }



   // A tree is height-balanced if at each node, the heights
   // of the node's two subtrees differs by no more than 1.
   // Special note about null subtrees:
   // 10
   // \
   // 20
   // Notice in this example that 10's left subtree is null,
   // and its right subtree has height 0. We would consider this
   // to be a balanced tree. If the tree is empty, return true;
   public boolean isBalanced() {
       return false;
   }


   //====================================================================================== Inner Node Class
   private class Node {
       private T data;
       private Node left, right;

       private Node(T data) {
           this.data = data;
           left = right = null;
       }
   }
}

import java.util.Arrays;

public class Tester {

   public static void main(String[] args) {
       BinarySearchTree_Lab08<Integer> bst = new BinarySearchTree_Lab08<Integer>();
      
       bst.add(25);      
       bst.add(12);  
       bst.add(80);
       bst.add(8);  
       bst.add(20);  
       bst.add(63);
       bst.add(12);   //   should not be added
       bst.add(25);   //   should not be added
       bst.add(90);
       bst.add(20);   //   should not be added
       bst.add(44);
       bst.add(73);
       bst.add(85);
       bst.add(71);

       System.out.println("Pre-Order : " + bst.preOrder_Traversal());
       System.out.println("In-Order : " + bst.inOrder_Traversal());
       System.out.println("Post-Order : " + bst.postOrder_Traversal());
       System.out.println("Breadth First: " + bst.breadthFirst_Traversal());
       /*
           Pre-Order   : 25 12 8 20 80 63 44 73 71 90 85
           In-Order : 8 12 20 25 44 63 71 73 80 85 90
           Post-Order : 8 20 12 44 71 73 63 85 90 80 25
           Breadth First: 25 12 80 8 20 63 90 44 73 85 71
       */
      
       System.out.println("Height : " + bst.getHeight());    // 4
       System.out.println("Contains(44) : " + bst.contains(44));    // true
       System.out.println("Contains(99) : " + bst.contains(99));    // false
       System.out.println("getLevel(73) : " + bst.getLevel(73));    // 3
       System.out.println("getLevel(99) : " + bst.getLevel(99));    // -1
       System.out.println("isBalanced() : " + bst.isBalanced());    // false
       System.out.println("isEmpty() : " + bst.isEmpty());        // false
       System.out.println("maxLeaf() : " + bst.maxLeaf());        // 85
       System.out.println("nodeCount() : " + bst.nodeCount());    // 11
       System.out.println("min() : " + bst.min());            // 8
       System.out.println("max() : " + bst.max());            // 90

      
       /* Uncomment the following loop after setting up the
       * BinarySearchTree_Lab08 for iteration */
       System.out.print("For Each Loop: ");
//       for(int s : bst)
//           System.out.print(s + " ");           // 8 12 20 25 44 63 71 73 80 85 90
   }
}

Homework Answers

Answer #1

****************************************************************************

Online Java Compiler.
Code, Compile, Run and Debug java program online.
Write your code in this editor and press "Run" button to execute it.

*******************************************************************************/

import java.util.ArrayList;

/*
Lab-08: BinarySearchTree Implementation

Rules:
1. Allow Tester to iterate through all nodes using the in-order traversal as the default.
This means, in Tester the following code should work for an instance of this class
called bst that is storing Student objects for the data:

BinarySearchTree_Lab08 bst = new BinarySearchTree_Lab08();
bst.add("Man"); bst.add("Soda"); bst.add("Flag");
bst.add("Home"); bst.add("Today"); bst.add("Jack");

for(String s : bst)
System.out.println(s);

2. You can not use a size variable to keep track of the number of nodes

3. You CAN (for extra credit) create a JUnit test - needs to be 100% complete
(if you do a JUnit test you need to also upload it)
*/


/**
* Lab-08: BinarySearchTree Implementation
*
* @author
*
*/

public class BinarySearchTree_Lab08 {
//====================================================================================== Properties

private Node root;

//====================================================================================== Constructors
public BinarySearchTree_Lab08() {
root = null;
}

// Constructor that takes an array of items and populates the tree
public BinarySearchTree_Lab08(T[] items) {
for(int i = 0; i < items.length();i++){
root = add_recursive(root, items[i]);
}
}

//====================================================================================== Methods


Node add_recursive(Node root, int key){
if (root == null) {
root = new Node(key);
return root;
}
//traverse the tree
if (key < root.key) //insert in the left subtree
root.left = add_recursive(root.left, key);
else if (key > root.key) //insert in the right subtree
root.right = add_recursive(root.right, key);
// return pointer
return root;
}


// Returns the traversal of this tree as an array
public ArrayList preOrder_Traversal() {  
ArrayList data = new ArrayList();
preOrder_Traversal(root, data);  
return data;
}
private void preOrder_Traversal(Node root, ArrayList data) {
if (root != null) {
data.add(root.key);
preOrder_Traversal(root.left);
preOrder_Traversal(root.right);
}
}

public ArrayList inOrder_Traversal() {  
ArrayList data = new ArrayList();
inOrder_Traversal(root, data);  
return data;
}
private void inOrder_Traversal(Node n, ArrayList data) {
if (root != null) {
inOrder_Traversal(root.left);
data.add(root.key);
inOrder_Traversal(root.right);
}
}

public ArrayList postOrder_Traversal() {  
ArrayList data = new ArrayList();
postOrder_Traversal(root, data);  
return data;  
}
private void postOrder_Traversal(Node n, ArrayList data) {
if (root != null) {
postOrder_Traversal(root.left);
postOrder_Traversal(root.right);
data.add(root.key);
}
}

public ArrayList breadthFirst_Traversal() {
Queue<Node> queue = new LinkedList<Node>();
queue.add(root);
ArrayList items = new ArrayList();
  
while (!queue.isEmpty())  
{
  
Node tempNode = queue.poll();
items.add(tempNode.key);
  
/*Enqueue left child */
if (tempNode.left != null) {
queue.add(tempNode.left);
}
  
/*Enqueue right child */
if (tempNode.right != null) {
queue.add(tempNode.right);
}
}
return items;
}


// Since this is a binary SEARCH tree, you should write
// an efficient solution to this that takes advantage of the order
// of the nodes in a BST. Your algorithm should be, on average,
// O(h) where h is the height of the BST.
public boolean contains(T data) {
root = search_Recursive(root, key);
if (root!= null)
return true;
else
return false;
}
Node search_Recursive(Node root, int key) {
// Base Cases: root is null or key is present at root
if (root==null || root.key==key)
return root;
// val is greater than root's key
if (root.key > key)
return search_Recursive(root.left, key);
// val is less than root's key
return search_Recursive(root.right, key);
}
// returns the smallest value in the tree
// or throws an IllegalStateException() if the
// tree is empty. Write the recursive version
public T min() { return min(root); } // this method is done for you.   
private T min(Node n) { // Write this method.
int minval = root.key;
//find minval
while (root.left != null) {
minval = root.left.key;
root = root.left;
}
return minval;
}

// returns the largest value in the tree
// or throws an IllegalStateException() if the
// tree is empty. Write the recursive version
public T max() { return max(root); } // this method is done for you.
private T max(Node n) { // Write this method.
int maxval = root.key;
//find minval
while (root.right != null) {
maxval = root.right.key;
root = root.right;
}
return maxval;
}

// Returns whether the tree is empty
public boolean isEmpty() {
return root == null;
}

// returns the height of this BST. If a BST is empty, then
// consider its height to be -1.
public int getHeight() {
return find_height(root);
}

private int find_height(Node root){
if(root == null)
return 0;
int l_height = find_height(root.left);
int r_height = find_height(root.right);
return max(l_height, r_height) + 1;
}


// returns the largest value of all the leaves
// If the tree is empty, throw an IllegalStateException()
// Note, this is different than max as this is the max
// of all leaf nodes
public T maxLeaf() {
if (root == null)
throw new IllegalStateException("Tree is empty");
int mxm = -20000;
return max_leaf(root, mxm);
}

private void max_leaf(Node root, int &mxm){
if(root == null)
return -200000;
max_leaf(root.left, mxm);
if(root.left == null and root.right == null)
mxm = max(mxm, root.key);
max_leaf(root.right);
  
  
}

// counts the number of nodes in this BST
public int nodeCount() {
return node_count(root);
}
private int node_count(Node root){
if(root == null)
return 0;
int l_count = node_count(root.left);
int r_count = node_count(root.right);
return l_count + r_count + 1;
}

// returns the "level" of the value in a tree.
// the root is considered level 0
// the children of the root are level 1
// the children of the children of the root are level 2
// and so on. If a value does not appear in the tree, return -1
// 15
// / \
// 10 28
// \ \
// 12 40
// /
// 30
// In the tree above:
// getLevel(15) would return 0
// getLevel(10) would return 1
// getLevel(30) would return 3
// getLevel(8) would return -1
public int getLevel(T n) {
return -1;
}


// *********************************************************
// EXTRA CREDIT: 5pts
// *********************************************************
// A tree is height-balanced if at each node, the heights
// of the node's two subtrees differs by no more than 1.
// Special note about null subtrees:
// 10
// \
// 20
// Notice in this example that 10's left subtree is null,
// and its right subtree has height 0. We would consider this
// to be a balanced tree. If the tree is empty, return true;
public boolean isBalanced() {
return isBalanced(root);
}
private boolean isBalanced(Node node)
{
int lh; /* for height of left subtree */
  
int rh; /* for height of right subtree */
  
/* If tree is empty then return true */
if (node == null)
return true;
  
/* Get the height of left and right sub trees */
lh = height(node.left);
rh = height(node.right);
  
if (Math.abs(lh - rh) <= 1
&& isBalanced(node.left)
&& isBalanced(node.right))
return true;
  
/* If we reach here then tree is not height-balanced */
return false;
}


//====================================================================================== Inner Node Class
private class Node {
private T data;
private Node left, right;

private Node(T data) {
this.data = data;
left = right = null;
}
}
}

import java.util.Arrays;

public class Tester {

public static void main(String[] args) {
BinarySearchTree_Lab08 bst = new BinarySearchTree_Lab08();
  
bst.add(25);   
bst.add(12);  
bst.add(80);
bst.add(8);  
bst.add(20);  
bst.add(63);
bst.add(12); // should not be added
bst.add(25); // should not be added
bst.add(90);
bst.add(20); // should not be added
bst.add(44);
bst.add(73);
bst.add(85);
bst.add(71);

System.out.println("Pre-Order : " + bst.preOrder_Traversal());
System.out.println("In-Order : " + bst.inOrder_Traversal());
System.out.println("Post-Order : " + bst.postOrder_Traversal());
System.out.println("Breadth First: " + bst.breadthFirst_Traversal());
/*
Pre-Order : 25 12 8 20 80 63 44 73 71 90 85
In-Order : 8 12 20 25 44 63 71 73 80 85 90
Post-Order : 8 20 12 44 71 73 63 85 90 80 25
Breadth First: 25 12 80 8 20 63 90 44 73 85 71
*/
  
System.out.println("Height : " + bst.getHeight()); // 4
System.out.println("Contains(44) : " + bst.contains(44)); // true
System.out.println("Contains(99) : " + bst.contains(99)); // false
System.out.println("getLevel(73) : " + bst.getLevel(73)); // 3
System.out.println("getLevel(99) : " + bst.getLevel(99)); // -1
System.out.println("isBalanced() : " + bst.isBalanced()); // false
System.out.println("isEmpty() : " + bst.isEmpty()); // false
System.out.println("maxLeaf() : " + bst.maxLeaf()); // 85
System.out.println("nodeCount() : " + bst.nodeCount()); // 11
System.out.println("min() : " + bst.min()); // 8
System.out.println("max() : " + bst.max()); // 90

  
/* Uncomment the following loop after setting up the
* BinarySearchTree_Lab08 for iteration */
System.out.print("For Each Loop: ");
// for(int s : bst)
// System.out.print(s + " "); // 8 12 20 25 44 63 71 73 80 85 90
}
}

Comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You will be traversing through an integer tree to print the data. Given main(), write the...
You will be traversing through an integer tree to print the data. Given main(), write the methods in the 'IntegerBinaryTree' class specified by the // TODO: sections. There are 6 methods in all to write. Ex: If the input is 70 86 60 90 49 62 81 85 38 -1 the output should be: Enter whole numbers to insert into the tree, -1 to stop Inorder: 38 - 49 - 60 - 62 - 70 - 81 - 85 -...
Here is a modification of the BST program that includes a recursive find method: BinarySearchTree2C.java (posted...
Here is a modification of the BST program that includes a recursive find method: BinarySearchTree2C.java (posted below) Implement the following methods using recursion: int depth() // returns the length of the deepest path from root to any leaf int node_count() // returns the number of nodes in the tree void insert(int n) // inserts value n into the tree BinarySearchTree2C clone() // returns a clone (deep copy) of the tree Add code to the main method to test these methods....
Complete the redblacktree in Java. Add a public boolean isBlack field to the Node inner class....
Complete the redblacktree in Java. Add a public boolean isBlack field to the Node inner class. Make every Node object have a false isBlack field, all new node is red by default. In the end of the insert method, set the root node of your red black tree to be black. Implement the rotate() and recolor() functions, and create tests for them in a separate class. import java.util.LinkedList; public class BinarySearchTree<T extends Comparable<T>> { protected static class Node<T> { public...
do a code trace on how a key gets deleted package interview; import java.util.*; public class...
do a code trace on how a key gets deleted package interview; import java.util.*; public class binarySearchTree { Node root; void insert(int key) { root = insertRec(root,key); } void delete(int key) { root = deleteRec(root,key); } Node insertRec(Node root, int key) { if(root == null) { root = new Node(key); return root; } if(key < root.key) { root.leftChild = insertRec(root.leftChild,key); } else if(key > root.key){ root.rightChild = insertRec(root.rightChild,key); } return root; } Node deleteRec(Node root, int key) { if(root ==...
This is in java and you are not allowed to use Java API classes for queues,...
This is in java and you are not allowed to use Java API classes for queues, stacks, arrays, arraylists and linkedlists. You have to write your own implementations for them. You should construct a BST by inserting node values starting with a null tree. You can re-use the code for the insert method given in the sample code from the textbook. -insert method is provided below Your code should have a menu driven user interface at the command line with...
The Binary Search Tree implementation for bst.zip. The code in the destructor of the BST class...
The Binary Search Tree implementation for bst.zip. The code in the destructor of the BST class is empty. Complete the destructor so the memory allocated for each node in the BST is freed. Make a couple of different trees in your main method or in a function to test the destructor (the program should not crash upon exiting). bst.zip (includes the following files below in c++): bst.h: #pragma once #include #include "node.cpp" using namespace std; template class BST { public:...
Here is a picture of a Binary Search Tree. First, construct the Binary Search Tree using...
Here is a picture of a Binary Search Tree. First, construct the Binary Search Tree using the following BinaryNode as we discussed in class. public class BinaryNode { private int value; private BinaryNode leftChild; private BinaryNode rightChild; public BinaryNode(int value) { this.value = value; leftChild = null; rightChild = null; } public BinaryNode(int value, BinaryNode leftChild, BinaryNode rightChild) { this.value = value; this.leftChild = leftChild; this.rightChild = rightChild; } public int getValue() { return value; } public void setValue(int value)...
Java Program: You will be inserting values into a generic tree, then printing the values inorder,...
Java Program: You will be inserting values into a generic tree, then printing the values inorder, as well as printing the minimum and maximum values in the tree. Given main(), write the methods in the 'BSTree' class specified by the // TODO: sections. There are 5 TODOs in all to complete. Ex: If the input is like ferment bought tasty can making apples super improving juice wine -1 the output should be: Enter the words on separate lines to insert...
Code in JAVA The requirements are as follows: The input will be in a text file...
Code in JAVA The requirements are as follows: The input will be in a text file whose name is given by arg[0] of main(). It will contain a fully-parenthesized infix expression containing only: "(", ")", "+", "-" and integers. Need help on the main and fixing the Queue. //Input: ( ( 1 + 2 ) - ( ( 3 - 4 ) + ( 7 - 2 ) ) ) ( ( 1 + 2 ) - ( 3 -...
Please write a class "template" AVLTree in C++. The class must be placed in a single...
Please write a class "template" AVLTree in C++. The class must be placed in a single header file called AVLTree.h The class must contain the following public member functions: -       necessary constructors for your implementation -       destructor -       isEmpty () – determines if the tree is empty - returns 1 if it is empty; 0 otherwise -       height () – returns the height of the node or -1 if a nullptr -       insert () – inserts data into the tree – must abide by AVL...