Consider A = {"bob" , "cindy" , "hal", "steve"}
Define the P(A).
Use the "BIN Method," as described in class, define this power set.
To define the power set of A = {"bob", "cindy", "hal", "steve"}
using the BIN method, proceed as follows. A '1' in the first
position will correspond to choosing "bob", in the second position
will correspond to choosing "cindy" and so on. Here is a table for
the same:
0000 | {} |
0001 | {"steve"} |
0010 | {"hal"} |
0011 | {"hal", "steve"} |
0100 | {"cindy"} |
0101 | {"cindy", "steve"} |
0110 | {"cindy", "hal"} |
0111 | {"cindy", "hal", "steve"} |
1000 | {"bob"} |
1001 | {"bob", "steve"} |
1010 | {"bob", "hal"} |
1011 | {"bob", "hal", "steve"} |
1100 | {"bob", "cindy"} |
1101 | {"bob", "cindy", "steve"} |
1110 | {"bob", "cindy", "hal"} |
1111 | {"bob", "cindy", "hal", "steve"} |
The second column describes all the sets in P(A). Comment in case of any doubts.
Get Answers For Free
Most questions answered within 1 hours.