Question

A skier with an initial speed of 15 m/s slides up a snowy slope with a...

A skier with an initial speed of 15 m/s slides up a snowy slope with a 2.50 m height as shown in the figure below. If the coefficient of friction between the skis and the snow is 0.06, what is the final velocity of the skier at the top of the hill?

Consider the mass of the skier to be 84 kg.

Homework Answers

Answer #1

if you found useful please give me a like.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 41.0-kg skier with an initial speed of 1.5 X 101 m/s coasts up a 2.50-m-high...
A 41.0-kg skier with an initial speed of 1.5 X 101 m/s coasts up a 2.50-m-high rise as shown below. The coefficient of friction between her skis and the snow is 0.0800. a) Where do you define the gravitational potential energy Ug to equal 0 J? b) If the skier has energy at the bottom of the hill state what kind it is and determine its value. c) If the skier reaches the top of the hill what kind of...
A skier is pulled up a slope at a constant velocity by a tow bar. The...
A skier is pulled up a slope at a constant velocity by a tow bar. The slope is inclined at 21.3 ° with respect to the horizontal. The force applied to the skier by the tow bar is parallel to the slope. The skier's mass is 45.7 kg, and the coefficient of kinetic friction between the skis and the snow is 0.212. Find the magnitude of the force that the tow bar exerts on the skier.
A resort uses a rope to pull a 55-kg skier up a 37 ∘ slope at...
A resort uses a rope to pull a 55-kg skier up a 37 ∘ slope at constant speed for 180 m . The coefficient of kinetic friction between snow and skis is μk = 0.18. A) Calculate the tension in the rope. B) How much work does the rope do on the skier?
Determine the stopping distance for a skier moving down a slope with friction with an initial...
Determine the stopping distance for a skier moving down a slope with friction with an initial speed of 19.0 m/s . Assume that θ = 5.62 deg, g=9.81 m/s2, and that the coefficient of kinetic friction between the skier and the slope is 0.289. Suppose the temperature drops by 2 degrees C and the skier waxes her skis; the coefficient of kinetic friction drops to 0.173. What is now the stopping distance, for the same initial velocity?
A 62.0-kg skier is moving at 6.10 m/s on a frictionless, horizontal, snow-covered plateau when she...
A 62.0-kg skier is moving at 6.10 m/s on a frictionless, horizontal, snow-covered plateau when she encounters a rough patch 4.10 m long. The coefficient of kinetic friction between this patch and her skis is 0.300. After crossing the rough patch and returning to friction-free snow, she skis down an icy, frictionless hill 2.50 m high. a) How fast is the skier moving when she gets to the bottom of the hill? b)How much internal energy was generated in crossing...
A 60.0-kg skier coasts up a snow-covered hill that makes an angle of 23.5 ° with...
A 60.0-kg skier coasts up a snow-covered hill that makes an angle of 23.5 ° with the horizontal. The initial speed of the skier is 9.17 m/s. After coasting a distance of 1.45 m up the slope, the speed of the skier is 3.65 m/s. (a) Find the work done by the kinetic frictional force that acts on the skis. (b) What is the magnitude of the kinetic frictional force?
A skier slides straight down an incline of 25 degrees without using her poles. The slope...
A skier slides straight down an incline of 25 degrees without using her poles. The slope itself is 96 meters long, and the skier starts from rest at the top. a. What would the velocity of the skier be at the bottom of the incline if friction can be neglected? b. What would your answer be to the previous question if the coefficient of kinetic friction between the skis and the snow is 0.13 on the incline? c. Upon reaching...
1. A 85.0-kg speed skier has finished a long down hill race and reaches a final...
1. A 85.0-kg speed skier has finished a long down hill race and reaches a final slope (fig. 1 below) designed to slow her down. At the bottom of this slope her speed is 29.0 m/s. She slides up the inclined plane of snow on her skis and at a certain vertical height h has speed 1.95 m/s. The force of friction between her skis and the snow does work of magnitude 3995.0 J . (Ignore air friction.) (a) What...
A 79.0-kg skier starts from rest and slides down a 36.0-m frictionless slope that is inclined...
A 79.0-kg skier starts from rest and slides down a 36.0-m frictionless slope that is inclined at an angle of 15.0° with the horizontal. Ignore air resistance. (a) Calculate the work done by gravity on the skier and the work done by the normal force on the skier. Work done by gravity? Work done by normal force? (b) If the slope is not frictionless so that the skier has a final velocity of 4 m/s, calculate the work done by...
A 73- kg skier grips a moving rope that is powered by an engine and is...
A 73- kg skier grips a moving rope that is powered by an engine and is pulled at constant speed to the top of a 23 ∘ hill. The skier is pulled a distance x = 280 m along the incline and it takes 2.0 min to reach the top of the hill. Part A If the coefficient of kinetic friction between the snow and skis is μ k = 0.10, what horsepower engine is required if 30 such skiers...