Question

One mole of superheated water is evaporated at 383 K and 101 kPa. Calculate DS of...

One mole of superheated water is evaporated at 383 K and 101 kPa. Calculate DS of the water and of the surroundings, DHv(373 K) = 47.3 kJ mol-1, Cp(H2O,l) = 75.4 J K-1 mol-1 , and Cp(H2O,g) = 30.36 + 9.61x10-3T + 11.8x10-7T2 (J K-1 mol-1). What is DS of the universe? The answer should be 126 , -122 , 4 J K-1 mol-1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One mole of NH3(g) is reversibly heated from 300 K to 1300 K at 1.00 bar...
One mole of NH3(g) is reversibly heated from 300 K to 1300 K at 1.00 bar pressure. Calculate q, w, ∆U, ∆H and ∆S. Data The molar heat capacity of NH3(g) is given by the equation Cpm(T) = a0 + a1T + a2T^2 with constants a0 = 24.295, a1 = 0.03990, −7.814 × 10−6 . Cpm is in units of J K−1 mol−1 and T is in units of K. Hints: dq = dH = CpdT and dS = dq/T...
Calculate ΔS°(universe) for the decomposition of 1 mol of liquid water to form gaseous hydrogen and...
Calculate ΔS°(universe) for the decomposition of 1 mol of liquid water to form gaseous hydrogen and oxygen at 25 °C. S° (J/K · mol) ΔfH° (kJ/mol) O2(g) 205.07 0 H2(g) 130.7 0 H2O(ℓ) 69.95 -285.83 P4(s, white) 41.1 0 PH3(g) 210.24 5.47 N2(g) 191.56 0 NH3(g) 192.77 -45.90 Cl2(g) 223.08 0 HCl(g) 186.2 -92.31 CO2(g) 213.74 -393.509 C(s, graphite) 0 5.6
One mole of either carbon monoxide or benzene are completely combusted with oxygen at constant temperature...
One mole of either carbon monoxide or benzene are completely combusted with oxygen at constant temperature and pressure (298 K and 1 atm) to generate CO2 and H2O. Assume all substances are ideal gases for calculating volume changes. a. Write out balanced combustion reactions for each reaction. b. Calculate the change in entropy for the system for each reaction, using the table, below. c. Use the enthalpies of formation to calculate the heat lost or gained during this reaction. d....
Part A) A total of 2.00 mol of a compound is allowed to react with water...
Part A) A total of 2.00 mol of a compound is allowed to react with water in a foam coffee cup and the reaction produces 101 g of solution. The reaction caused the temperature of the solution to rise from 21.00 to 24.70 ∘C. What is the enthalpy of this reaction? Assume that no heat is lost to the surroundings or to the coffee cup itself and that the specific heat of the solution is the same as that of...