Question

You drop 0.050 g of Mg chips into 100.0 mL of 1.00 M HCl and the...

You drop 0.050 g of Mg chips into 100.0 mL of 1.00 M HCl and the temperature of the solution increases from 22.21 °C to 24.46 °C. Assume that cs (solution) - 4.20 J/g °C and that the density of the solution is 1.00 g/mL. What is the enthalpy of the reaction per mole of Mg?

Mg (s) + 2 HCl (aq) ----> H2 (g) + MgCl2 (aq)

Homework Answers

Answer #1

1) The heat liberated from the solution is given by

Q = m Cs T

Given that, m = mass of sample = 100mL*1g/mL = 100g

C = Specific heat capacity of solution = 4.20 J/g °C

T = 24.46 - 22.21 = 2.25 oC

Q = 100g*4.20J/g °C*2.25 oC = 945 J = 0.945 KJ

Thus, 0.945 KJ per 0.05 g of Mg

2) Moles of Mg solute =Weight of Mg/Atomic wt. of Mg

Moles of Mg = 0.050g/24.30g/mol = 0.00205 mole

3) Enthalpy change per moles of Mg

0.945 KJ/0.00205 mole = 460.97 KJ = 461 KJ (3 sig. figs)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5) Suppose you place 0.500 g of Mg metal in a coffee cup calorimeter.You add 100.0...
5) Suppose you place 0.500 g of Mg metal in a coffee cup calorimeter.You add 100.0 mL of 1.00 M HCl.The mass of the HCl solution is 100.112 g.The reaction that occurs is as follows: Mg (s) + 2 HCl (aq) ® MgCl2 (aq) + H2 (g) The initial temperature of the HCl solution is 22.2°C and the final temperature after the reaction is complete is 44.8°C. The specific heat of water is 4.184 J/g·K, and magnesium is the limiting...
During an experiment, a student adds 0.339 g of calcium metal to 100.0 mL of 2.05...
During an experiment, a student adds 0.339 g of calcium metal to 100.0 mL of 2.05 M HCl. The student observes a temperature increase of 11.0 °C for the solution. Assuming the solution\'s final volume is 100.0 mL, the density is 1.00 g/mL, and the specific heat is 4.184 J/(g·°C), calculate the heat of the reaction, ΔHrxn. Ca(s)+2H+(aq) ---->Ca2+(aq) + H2(g) delta Hrxn= ______kJ/mol
When 0.109 g of Zn(s) combines with enough HCl to make 55.7 mL of HCl(aq) in...
When 0.109 g of Zn(s) combines with enough HCl to make 55.7 mL of HCl(aq) in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.2 °C to 24.8 °C: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g) Calculate the enthalpy change of the reaction ΔHrxn in J/mol. Insert your answer in kJ, but do not write kJ after the number. (Assume the density of the solution is 1.00 g/mL and the...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. the temperature of each solution before mixing is 22.5°C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with thermometer; the maximum temperature measured is 32.1 C. Assume that the density of the mixed solutions is 1.00 g/ml that...
When 0.113 g of Zn(s) combines with enough HCl to make 53.6 mL of HCl(aq) in...
When 0.113 g of Zn(s) combines with enough HCl to make 53.6 mL of HCl(aq) in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.3 °C to 24.7 °C: Zn(s) + 2HCl(aq) → ZnCl2​(aq) + H2​(g) Calculate the enthalpy change of the reaction ΔHrxn​ in J/mol. Insert your answer in kJ, but do not write kJ after the number. (Assume the density of the solution is 1.00 g/mL and the...
When 0.100 g Zn(s) combines with enough HCl to make a total of 55.0 mL solution...
When 0.100 g Zn(s) combines with enough HCl to make a total of 55.0 mL solution in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.0∘C to 24.5 ∘C: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g) Calculate the enthalpy change of the reaction ΔHrxn. (Assume the density of the solution is 1.00 g/mL and the specific heat capacity of solution is 4.184 J/g∘C.) in J/mol. (Enter answer in numerical form...
Calculate qrxn for the reaction that occurs when 25.0 mL of 1.00 M HCl are added...
Calculate qrxn for the reaction that occurs when 25.0 mL of 1.00 M HCl are added to 25.0 mL of 1.00 M NaOH in a coffee-cup calorimeter at room temperature (25.0o C). The final temperature of the solution was 31.4o C. Assume that the density of the solution is 1.00 g/mL and that Cs,soln is 4.18 J/g.o C.
When a chemist mixed 3.60 g of LiOH and 180. mL of 0.65 M HCl in...
When a chemist mixed 3.60 g of LiOH and 180. mL of 0.65 M HCl in a constant-pressure calorimeter, the final temperature of the mixture was 25.4°C. Both the HCl and LiOH had the same initial temperature, 20.8°C. The equation for this neutralization reaction is: LiOH(s) + HCl(aq) ? LiCl(aq) + H2O(l). Given that the density of each solution is 1.00 g/mL and the specific heat of the final solution is 4.1801 J/g·K, calculate the enthalpy change for this reaction...
Suppose that 300.0 mL of 1.00 M HCl at 25.0°C is added to 300.0 mL of...
Suppose that 300.0 mL of 1.00 M HCl at 25.0°C is added to 300.0 mL of 1.00 M NaOH at 25.0°C in a coffee cup calorimeter. If the enthalpy of the reaction is −54.0 kJ/mol of NaCl formed, what is the final temperature of the solution in the calorimeter? Assume the mixture has a specific heat capacity of 4.18 J/(g·K) and a density of 1.00 g/mL (1) 3.5°C                     (2) 6.5°C                     (3) 18.5°C                   (4) 31.5°C                   (5) 46.5°C
When 1.3584 g of sodium acetate trihydrate was mixed into 100.0 mL of 0.2000 M HCl...
When 1.3584 g of sodium acetate trihydrate was mixed into 100.0 mL of 0.2000 M HCl (aq) at 25˚C in a coffee-cup calorimeter, its temperature fell by 0.397˚C. The reaction occurring is as follows: H3O+(aq) + NaCH3CO23 H2O (s) Na+ (aq) + CH3COOH (aq) + 4H2O() a) The heat capacity of the calorimeter is 91.0 J/˚C. Determine the enthalpy of reaction (in kJ/mol). Describe any assumptions that you made. b) Determine the standard enthalpy of formation for the solid sodium...