Question

Calculate qrxn for the reaction that occurs when 25.0 mL of 1.00 M HCl are added...

Calculate qrxn for the reaction that occurs when 25.0 mL of 1.00 M HCl are added to 25.0 mL of 1.00 M NaOH in a coffee-cup calorimeter at room temperature (25.0o C). The final temperature of the solution was 31.4o C. Assume that the density of the solution is 1.00 g/mL and that Cs,soln is 4.18 J/g.o C.

Homework Answers

Answer #1

total volume of the solution = 25 + 25 = 50 mL

density of the solution = 1 g / mL

mass = density x volume

          = 1 x 50

          = 50 g

dT = T2 - T1

       = 31.4 -25

        = 6.4 oC

Cp = 4.18 J / g oC

qrxn = m Cp dT

        = 50 x 4.18 x 6.4

        = 1338 J

qrxn   = 1338 J     (or) 1.34 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that 300.0 mL of 1.00 M HCl at 25.0°C is added to 300.0 mL of...
Suppose that 300.0 mL of 1.00 M HCl at 25.0°C is added to 300.0 mL of 1.00 M NaOH at 25.0°C in a coffee cup calorimeter. If the enthalpy of the reaction is −54.0 kJ/mol of NaCl formed, what is the final temperature of the solution in the calorimeter? Assume the mixture has a specific heat capacity of 4.18 J/(g·K) and a density of 1.00 g/mL (1) 3.5°C                     (2) 6.5°C                     (3) 18.5°C                   (4) 31.5°C                   (5) 46.5°C
25 mL of 1.0 M NaOH(aq) is placed in the coffee cup calorimeter and measure the...
25 mL of 1.0 M NaOH(aq) is placed in the coffee cup calorimeter and measure the temperature as 18.0 0C. Addition of 25 mL of 1.0 M HCl causes the temperature to rise to 25.0 0C. What is the Hrxn for this reaction of neutralization of NaOH? (dH2O = 1.00 g/mL and cs, H2O = 4.18 J/g0C))
Andrea has been measuring the enthalpy change associated with reaction between HCl and NaOH in a...
Andrea has been measuring the enthalpy change associated with reaction between HCl and NaOH in a coffee cup calorimeter. Andrea combined 51.48 mL of 1.00 M HCl and 34.62 mL of 1.00 M NaOH in a coffee cup calorimeter (mass of the coffee cups + a stir bar = 15.00 g). If the initial temperature of the acid/base solution was 17.13 oC, and the final observed temperature was 27.95 oC, what is the enthalpy change of the neutralization reaction, in...
When 27.7 mL of 0.500 M H2SO4 is added to 27.7 mL of 1.00 M KOH...
When 27.7 mL of 0.500 M H2SO4 is added to 27.7 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17°C. Calculate ?H of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g·°C.)
When 26.6 mL of 0.500 M H2SO4 is added to 26.6 mL of 1.00 M KOH...
When 26.6 mL of 0.500 M H2SO4 is added to 26.6 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50 ° C, the temperature rises to 30.17 ° C. Calculate Δ H of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g ·...
When 23.8 mL of 0.500 M H2SO4 is added to 23.8 mL of 1.00 M KOH...
When 23.8 mL of 0.500 M H2SO4 is added to 23.8 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17°C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g·°C.) ?: kJ/mol H2O
When 26.5 mL of 0.500 M H2SO4 is added to 26.5 mL of 1.00 M KOH...
When 26.5 mL of 0.500 M H2SO4 is added to 26.5 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50° C, the temperature rises to 30.17° C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g°C). Answer in kJ/molH2O
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. the temperature of each solution before mixing is 22.5°C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with thermometer; the maximum temperature measured is 32.1 C. Assume that the density of the mixed solutions is 1.00 g/ml that...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 21.05 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.10 °C. Assume that the density of the mixed solutions is 1.00...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 22.45 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.10 °C. Assume that the density of the mixed solutions is 1.00...