Question

At 1,500 K, the equilibrium constant for the reaction below is Kc=0.0819. Br2(g) --> 2 Br(g)...

At 1,500 K, the equilibrium constant for the reaction below is Kc=0.0819. Br2(g) --> 2 Br(g) What is the percent dissociation of Br2 at 1,500 K, if the initial concentration of Br2 is 2.25 mol/L? Give your answer accurate to two significant figures. Do not include the % sign as part of your answer. Hint: If the initial concentration of Br2 is Co and the concentration of Br2 decreases by x (because of dissociation), then the percent dissociation of Br2 is equal to 100(x / Co).

Homework Answers

Answer #1

Br2 (g)   -----------------> 2 Br (g)

2.25                                  0

2.25 - x                             x

Kc = [Br]^2 / [Br2]

0.0819 = x^2 / 2.25 - x

0.1843 - 0.0819 x = x^2

x = 0.390

% dissociation =( x / Co ) x 100

                       = 0.390 / 2.25 ) x 100

% dissociation = 17.3 %

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At 1,600 K, the equilibrium constant for the reaction below is Kc = 0.215. Br2(g) ⇌...
At 1,600 K, the equilibrium constant for the reaction below is Kc = 0.215. Br2(g) ⇌ 2 Br(g) What is the percent dissociation of Br2 at 1,600 K, if the initial concentration of Br2 is 2.25 mol L−1 ?
Problem 15.52 For the equilibrium Br2(g)+Cl2(g)⇌2BrCl(g) at 400 K, Kc = 7.0. Part A If 0.25...
Problem 15.52 For the equilibrium Br2(g)+Cl2(g)⇌2BrCl(g) at 400 K, Kc = 7.0. Part A If 0.25 mol of Br2 and 0.55 mol of Cl2 are introduced into a 3.0-L container at 400 K, what will be the equilibrium concentration of Br2? Express your answer to two significant figures and include the appropriate units. SubmitMy AnswersGive Up Part B If 0.25 mol of Br2 and 0.55 mol of Cl2 are introduced into a 3.0-L container at 400 K, what will be...
The equilibrium constant Kc for the reaction below is 0.00173 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00173 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0393 M and [Br] = 0.0940 M, calculate the concentrations of these species at equilibrium. [Br2] = M [Br] = M
The equilibrium constant Kc for the reaction below is 0.00431 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00431 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0668 M and [Br] = 0.0466 M, calculate the concentrations of these species at equilibrium.
The equilibrium constant Kc for the reaction below is 0.00622 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00622 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0672 M and [Br] = 0.0563 M, calculate the concentrations of these species at equilibrium.
The equilibrium constant Kc for the reaction below is 0.00440 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00440 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0131 M and [Br] = 0.0854 M, calculate the concentrations of these species at equilibrium.
The equilibrium constant Kc for the reaction below is 0.00967 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00967 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0427 M and [Br] = 0.0554 M, calculate the concentrations of these species at equilibrium.
The equilibrium constant Kc for the reaction below is 0.00399 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00399 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0395 M and [Br] = 0.0655 M, calculate the concentrations of these species at equilibrium.
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730°...
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730° C. Starting with 4.20 moles of HBr in a 17.8−L reaction vessel, calculate the concentrations of H2,Br2, and HBr at equilibrium. 17. The equilibrium constant Kc for the reaction below is 0.00771 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0433 M and [Br] = 0.0462 M, calculate the concentrations of these species at equilibrium. For the reaction...
For the following reaction, Kc = 255 at 1000 K. CO (g) + Cl2 (g) ⇌...
For the following reaction, Kc = 255 at 1000 K. CO (g) + Cl2 (g) ⇌ COCl2 (g) A reaction mixture initially contains a CO concentration of 0.1530 M and a Cl2 concentration of 0.176 M at 1000 K. Part A What is the equilibrium concentration of CO at 1000 K? Express your answer in molarity to three significant figures. Part B What is the equilibrium concentration of Cl2 at 1000 K? Express your answer in molarity to three significant...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT