Question

A mass of 43.0 g of an unknown solid initially at 130.0 ∘C is added to...

A mass of 43.0 g of an unknown solid initially at 130.0 ∘C is added to an ideal constant pressure calorimeter containing 100.0 g of water (Cs,water=4.184J/(g⋅∘C)) initially at 20.0 ∘C. After the mixture reaches thermal equilibrium, the final temperature is recorded to be 36.49 ∘C. What is the specific heat capacity of the unknown solid?

Express your answer to three significant figures.

Homework Answers

Answer #1

Since the temperature of water in the calorimeter increases so heat must be absorbed by the liberated heat by the solid

Heat lost by solid = Heat gained by water

mcdt = m'c'dt'

Where

m = mass of solid = 43.0 g

c = specific heat capacity of solid = ?

dt = change in temperature of solid = 130.0 - 36.49 oC = 93.51 oC

m' = mass of water = 100.0 g

c' = specific heat capacity of water = 4.184 J/g-oC

dt' = change in temperature of water = 36.49 - 20.0 oC = 16.49 oC

Plug the values we get c = (m'c'dt')/(mdt)

                                    = 1.716 J/g-oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(A) A 36.0 g piece of lead at 130.0 C is placed in 100.0 g of...
(A) A 36.0 g piece of lead at 130.0 C is placed in 100.0 g of water at 20.0 C. What is the temperature (in C) of the water once the system reaches equilibrium? The molar heat capacity of lead is 26.7 J/(mol·K). The specific heat capacity of water is 4.18 J/(g·K). (B) How much energy (in kJ) will it take to heat up 1150 ml of water in a coffee pot from 24 C to 95 C given that...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C . Part A Determine the amount of heat, in J , lost by the copper block....
A 32.5 g iron rod, initially at 22.6 ∘C, is submerged into an unknown mass of...
A 32.5 g iron rod, initially at 22.6 ∘C, is submerged into an unknown mass of water at 63.1 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 59.2 ∘C. What is the mass of the water? Express your answer to two significant figures and include the appropriate units.
A 32.9 g iron rod, initially at 22.4 ∘C, is submerged into an unknown mass of...
A 32.9 g iron rod, initially at 22.4 ∘C, is submerged into an unknown mass of water at 62.6 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 58.4 ∘C. What is the mass of the water? Express your answer to two significant figures and include the appropriate units.
A 200 g of copper, initially at 300o C, is dropped into a 350 g of...
A 200 g of copper, initially at 300o C, is dropped into a 350 g of water contained in a 355 g aluminum calorimeter; the water and the calorimeter are initially 15o C. If 25 g iron stirrer is used to bring the mixture into thermal equilibrium, what is the final temperature of the system? ( Assume that the stirrer is initially at 15o C.) Specific heat of copper and aluminum are 0.092 cal/g oC and 0.215 cal/g oC respectively....
A piece of unknown material of mass 0.15 kg is heated to 110°C without melting and...
A piece of unknown material of mass 0.15 kg is heated to 110°C without melting and then placed in a calorimeter containing 0.76 kg of water initially at 14.5°C. The system reaches an equilibrium temperature of 20.8°C a)  What is the specific heat of the unknown material, in units of J/(kg⋅°C)? The specific heat of water is 4.186 × 103 J/(kg⋅°C).
An iron calorimeter of mass 153 g contains 260 g of water. The system is in...
An iron calorimeter of mass 153 g contains 260 g of water. The system is in thermal equilibrium at +10°C. We place two blocks of metal in the water: one is a 45 g piece of copper with an initial temperature of +61°C; the second piece has a mass of 75 g and is initially at +100°C. The combined system reaches a final equilibrium temperature of +41°C. Calculate the specific heat capacity of the unknown second piece of metal.
An unknown substance has a mass of 0.125 kg and an initial temperature of 79.8°C. The...
An unknown substance has a mass of 0.125 kg and an initial temperature of 79.8°C. The substance is then dropped into a calorimeter made of aluminum containing 0.285 kg of water initially at 21.0°C. The mass of the aluminum container is 0.150 kg, and the temperature of the calorimeter increases to a final equilibrium temperature of 32.0°C. Assuming no thermal energy is transferred to the environment, calculate the specific heat of the unknown substance.
An unknown substance has a mass of 0.125 kg and an initial temperature of 92.5°C. The...
An unknown substance has a mass of 0.125 kg and an initial temperature of 92.5°C. The substance is then dropped into a calorimeter made of aluminum containing 0.285 kg of water initially at 27.0°C. The mass of the aluminum container is 0.150 kg, and the temperature of the calorimeter increases to a final equilibrium temperature of 32.0°C. Assuming no thermal energy is transferred to the environment, calculate the specific heat of the unknown substance.
1. What is the final temperature of a solution initially at 22.0 celsius if 2.45 g...
1. What is the final temperature of a solution initially at 22.0 celsius if 2.45 g of a solid is dropped into 34.5 g of the solution resulting in the reaction between the two that absorbs 1350 J of heat? 2. If a 31.25g piece of an unknown metal at 25 Celsius was added to 25.0 g of water at 100.0Celsius and the two equilibrated at 95.2 Celsius , what is the specific heat capacity of the metal? 3. In...