Question

A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...

A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C .

Part A

Determine the amount of heat, in J , lost by the copper block. (3350 J)

Part B

Determine the amount of heat gained by the water. The specific heat of water is 4.18 J/g⋅K . (2720 J)

Part C

The difference between your answers for (a) and (b) is due to heat loss through the Styrofoam® cups and the heat necessary to raise the temperature of the inner wall of the apparatus. The heat capacity of the calorimeter is the amount of heat necessary to raise the temperature of the apparatus (the cups and the stopper) by 1 K . Calculate the heat capacity of the calorimeter in J/K .

Express your answer using two significant figures.

Part D

What would be the final temperature of the system if all the heat lost by the copper block were absorbed by the water in the calorimeter?

Homework Answers

Answer #1

Q = mc∆T

Q = heat energy (Joules, J), m = mass of a substance (kg)

c = specific heat (units J/kg∙K), is a symbol meaning "the change in"

∆T = change in temperature (Kelvins, K)

Part A

heat, in J , lost by the copper block

Q = 124g x 0.385 J/g⋅K x ( 100.4 ∘C -30.3 ∘C)

Q =3346.574 Joules  

Part B

The amount of heat gained by the water

Q = 130g x 4.184 J/g⋅K x ( 30.3 ∘C -25.3  ∘C)

Q =2719.6Joules  

Part C

heat capacity of the calorimeter   3346.574 Joules - 2719.6 Joules / 5 ∘C =  125.3948 ∘C

we can use either ∘C or kelvin

Part D

Heat lost by copper = Heat gained by water

124g x 0.385 J/g⋅K x ( 100.4 ∘C - X ∘C) =  130g x 4.184 J/g⋅K x ( X -25.3  ∘C)

4793.096 - 47.74 X = 543.92 X -13761.176  

18554.272 = 591.66 X

X = 31.359 ∘C

Hence final temperature will be  31.359 ∘C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g...
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g of copper metal at a temperature of 95.5 °C was placed in the calorimeter. The equilibrium temperature was 36.2 °C. The molar heat capacity of water is 75.4 J / mol °C. Determine the molar heat capacity of the copper.
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When...
Calorimetry Problem: Show your work neatly and methodically. Include the sign associated with ΔH. 1. When a 6.55 gram sample of solid sodium hydroxide dissolves in 115.00 grams of water in a coffee-cup calorimeter, the temperature rises from 21.6°C to 38.7°C. Calculate ΔH, in kJ/mole NaOH, for the solution process. NaOH(s)  Na1+(aq) + OH1- (aq) The specific heat of the solution is 4.18 J/g °C. 3. 2, A 2.600 gram sample of phenol, C6H5OH, was burned in a bomb...
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8...
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8 g of water at 62°C with 95.8 g of water, already in the calorimeter, at 18.2°C, the final temperature of the water is 35.0°C. Calculate the heat capacity of the calorimeter in J/K. Use 4.184 J/g°C as the specific heat of water.
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g),...
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g), also at 24.2 degree celsius, is added to the water, and after the ammonium nitrate dissolves, the final temperature is 18.3 degrees celsius.What is the heat of solution of ammonium nitrate in kj/mol? Assume that the specific heat capacity of the solution is 4.18 J/Cg and that no heat is transferred to the surrounds or to the calorimeter.
In a coffee-cup calorimeter, 130.0 mL of 1.0 M NaOH and 130.0 mL of 1.0 M...
In a coffee-cup calorimeter, 130.0 mL of 1.0 M NaOH and 130.0 mL of 1.0 M HCl are mixed. Both solutions were originally at 26.8°C. After the reaction, the final temperature is 33.5°C. Assuming that all the solutions have a density of 1.0 g/cm and a specific heat capacity of 4.18 J/°C ⋅ g, calculate the enthalpy change for the neutralization of HCl by NaOH. Assume that no heat is lost to the surroundings or to the calorimeter. Enthalpy change...
When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the...
When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the temperature rises from 25.18 ˚C to 47.53 ˚C. Calculate the ∆Hrxn for the dissolution process. Assume that the solution has a specific heat capacity of 4.184 J/gK
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of...
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of water at 27.0°C. Determine the amount of steam (in g) needed for the system to reach a final temperature of 56.0°C. The specific heat of copper is 387 J/(kg · °C).
The aluminum cup inside your calorimeter weighs 39.96 g. You add 49.96 g of ice cold...
The aluminum cup inside your calorimeter weighs 39.96 g. You add 49.96 g of ice cold water to the calorimeter. You measure the temperature of the calorimeter to be 0.5oC just before your next addition. You then add 50.44 g of hot water and a 50.10 g metal object, all having an initial temperature of 69.5oC. After the calorimeter reaches thermal equilibrium, the final temperature is measured to be 36.1oC. Assume that: the calorimeter is completely insulated the heat capacity...
The aluminum cup inside your calorimeter weighs 40.85 g. You add 49.81 g of water and...
The aluminum cup inside your calorimeter weighs 40.85 g. You add 49.81 g of water and 3.03 g of KCl to the calorimeter. The initial temperature is 20.1oC, and the final temperature is 16.9oC. What is the heat of dissolution for the amounts of salt added, in units of J? Assume that: the calorimeter is completely insulated the heat capacity of the empty calorimeter is the heat capacity of the aluminum cup. the mass of KCl added is small enough...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT