Question

using viral equation of state, calculate pressure exerted by 4.56g of nitrogen gas in a vessel...

using viral equation of state, calculate pressure exerted by 4.56g of nitrogen gas in a vessel of volume 2.25L at 273 kelvin? B= -10.5cm/mol

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Whhat pressure would 4.56g of nitrogen gas in a vessel of volume 2.25 dm3 exert at...
Whhat pressure would 4.56g of nitrogen gas in a vessel of volume 2.25 dm3 exert at 273 K if it obeyed the vi rial equation of state up to and induding the first two terms?
A. Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of...
A. Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature of 286.5 K . B. Use the ideal gas equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.990 L at a temperature of 286.5 K .
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted...
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted by 1.00 mole of Argon at a volume of 1.31 L at 426 K. The van der Waals parameters a and b for Argon are 1.355 bar*dm6*mol-2 and 0.0320 dm3*mol-1, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2...
Use the van der Waals equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature of 302.0 K . Use the ideal gas equation to calculate the pressure exerted by 1.205 mol of Cl2 in a volume of 4.755 L at a temperature of 302.0 K
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition (mole fractions) in a system containing a liquid that is 1.200 mole% N2 and 98.80 mole% water in equilibrium with nitrogen gas and water vapor at 50.0°C. The Henry's law constant for nitrogen in water is recommended by NIST to be well represented by kH = 0.000625 exp[1300 (1/T – 1/298.15)] mol N2 / (kg H2O bar), where T is measured in Kelvin a)...
Use the van der Waals equation of state to calculate the pressure of 3.20 mol of...
Use the van der Waals equation of state to calculate the pressure of 3.20 mol of H2O at 467 K in a 3.70 L vessel. Use the ideal gas equation to calculate the pressure under the same conditions.
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of...
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of Xe at 483 K in a 4.20-L vessel. Van der Waals constants can be found here. Use the ideal gas equation to calculate the pressure under the same conditions.
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of...
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of CH4 at 457 K in a 4.50 L vessel. Van der Waals constants can be found here. P= ________ atm Use the ideal gas equation to calculate the pressure under the same conditions. P= ______ atm
A gas in a vessel at 120oF and 13.8 psia consists of 2 % nitrogen, 79...
A gas in a vessel at 120oF and 13.8 psia consists of 2 % nitrogen, 79 % methane, and 19 % ethane. a) If the ethane were removed from the gas, what would be the pressure in the vessel? b) What would be the subsequent partial pressure of nitrogen?
Calculate the pressure exerted by benzene for a molar volume of 2.4 L at 600. K...
Calculate the pressure exerted by benzene for a molar volume of 2.4 L at 600. K using the Redlich-Kwong equation of state: P=RTVm−b−aT√1Vm(Vm+b)=nRTV−nb−n2aT√1V(V+nb) The Redlich-Kwong parameters a and b for benzene are 452.0 bar dm6 mol−2 K1/2 and 0.08271 dm3 mol−1, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?