Question

A 632 [nm] wavelength travels from air to a second media filled with oil (n =...

A 632 [nm] wavelength travels from air to a second media filled with oil (n = 1.46). What is the wavelength in the second media?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a physics lab, light with wavelength 486 nm travels in air from a laser to...
In a physics lab, light with wavelength 486 nm travels in air from a laser to a photocell in 17.0 ns. When a slab of glass 0.850 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.3 ns to travel from the laser to the photocell. What is the wavelength of the light in the glass?    nm
Light with wavelength 700 nm travels through a vacuum (n=1). It is normally incident upon a...
Light with wavelength 700 nm travels through a vacuum (n=1). It is normally incident upon a thin layer of oil (n=1.4), which rests upon a thick layer of glass (n=1.5). a)  What is the minimum thickness of oil needed to minimize the light reflected from the oil? b) What is the minimum thickness of oil needed to maximize the reflected light?
A 720 nm thick oil film floats on a plastic plate. White light incident from air...
A 720 nm thick oil film floats on a plastic plate. White light incident from air strikes the film at normal incidence. What visible wavelengths will be constructively reflected from the film? Take the wavelength of visible light in air to be from 400 nm to 700 nm. The index of refraction of the plate is 1.47 and that of the film is 1.60.
Light with a wavelength of 432 nm in vacuo travels from vacuum to water. Find the...
Light with a wavelength of 432 nm in vacuo travels from vacuum to water. Find the frequency and wavelength of the light inside the water.
Light with wavelength 700 nm travels through a vacuum (n=1). It is normally incident upon a...
Light with wavelength 700 nm travels through a vacuum (n=1). It is normally incident upon a thin layer of water (n=1.33), which rests upon a thick layer of glass (n=1.5). a) What is the minimum thickness of water needed to minimize the light reflected from the water? b) What is the minimum thickness of water needed to maximize the reflected light?
Light of wavelength 656 nm is incident perpendicularly on a soap film (n = 1.33) suspended...
Light of wavelength 656 nm is incident perpendicularly on a soap film (n = 1.33) suspended in air. What are the (a) least and (b) second least thicknesses of the film for which the reflections from the film undergo fully constructive interference?
A glass plate (n = 1.59) is covered with a thin, uniform layer of oil (n...
A glass plate (n = 1.59) is covered with a thin, uniform layer of oil (n = 1.25). A light beam of variable wavelength from air is incident normally on the oil surface. Observation of the reflected beam shows constructiveinterference at 630 nm. Determine the minimum non-zero thickness of the oil film. (in nm)
Does the frequency or wavelength of light change as the light travels from water to air
Does the frequency or wavelength of light change as the light travels from water to air
A glass plate (n = 1.60) is covered with a thin, uniform layer of oil (n...
A glass plate (n = 1.60) is covered with a thin, uniform layer of oil (n = 1.27). A light beam of variable wavelength from air is incident normally on the oil surface. Observation of the reflected beam shows constructive interference at 677 nm. Determine the minimum non-zero thickness of the oil film.
A pool of water is covered with a film of oil which is 256 nm thick....
A pool of water is covered with a film of oil which is 256 nm thick. For what wavelength of visible light (in air) will the reflected light constructively interfere? The index of refraction of the oil is 1.65. Visible light (in air) has wavelengths between 430 nm (blue) and 770 nm (red) in air. Assume that the incident light is normal to the surface of the oil.