Question

1. Calculate the unit less Henry’s constant for the following chemicals (1) using the tabulated values...

1. Calculate the unit less Henry’s constant for the following chemicals (1) using the tabulated values of Henry’s constant in appendix of a textbook and (2) using the vapor pressure and solubility data

Ethyl benzene, 1,2-dichloroethane

Homework Answers

Answer #1

Dear friend you have not given tabulated values from appendix. I do not know which text book you are using. Vapour pressure and solubility data also not here.

For your kind consideration i am attached two problems with solutions, which might be very helpful to you.

Thank you, all the best.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate So values for the following reactions by using tabulated So values from Appendix C. (a)...
Calculate So values for the following reactions by using tabulated So values from Appendix C. (a) N2O4(g) 2 NO2(g) So = J/K (b) 2 PCl3(g) + O2(g) 2 POCl3(g) So = J/K (c) 2 NOCl(g) Æ 2 NO(g) + Cl2(g) So = J/K (d) SO2(g) + 1/2 O2(g) SO3(g) So = J/K
Calculate So values for the following reactions by using tabulated So values from Appendix C. (a)...
Calculate So values for the following reactions by using tabulated So values from Appendix C. (a) N2H4(g) + H2(g)--> 2 NH3(g) S = J/K (b) N2O4(g) --> 2 NO2(g) S= ___J/K (c) Be(OH)2(s) --> BeO(s) + H2O(g) deltaS= ___J/K (d) 2 NOCl(g) Æ 2 NO(g) + Cl2(g) delta-S = ___J/K
Calculate So values for the following reactions by using tabulated So values from Appendix C. (a)...
Calculate So values for the following reactions by using tabulated So values from Appendix C. (a) H2(g) + F2(g) 2 HF(g) So = -546.6 Incorrect: Your answer is incorrect. J/K (b) 2 CH4(g) C2H6(g) + H2(g) So = -12.3 Incorrect: Your answer is incorrect. J/K (c) CaCO3(s) CaO(s) + CO2(g) So = 160.5 Correct: Your answer is correct. J/K (d) Be(OH)2(s) BeO(s) + H2O(g) So = 156.80 Incorrect: Your answer is incorrect. J/K
Using tabulated thermodynamic values in the Appendix: Calculate the minimum amount of propane that would need...
Using tabulated thermodynamic values in the Appendix: Calculate the minimum amount of propane that would need to be burned (at a flame temperature of 2000 °C) to raise 100 g of ice from −4 °C to the boiling point 100 °C. Assume perfect heat transfer from the reaction to the ice.
1. The following are the vapor pressures of some relatively common chemicals measured at 20 °C:...
1. The following are the vapor pressures of some relatively common chemicals measured at 20 °C: Benzene, C6H6 80 torr Acetic acid, HC2H3O2 11.7 torr Acetone, C3H6O 184.8 torr Water, H2O 17.5 torr Diethyl ether, C4H10O 442.2 torr Arrange these substances in order of increasing boiling point. 2. At 0.00 °C, hexane, C6H14, has a vapor pressure of 45.37 mm Hg. Its ΔHvap is 30.1 kJ mol-1. What is the vapor pressure of hexane at 12.9 °C? The vapor pressure...
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A: Using data in Appendix C in the textbook, calculate...
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A: Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 440 ∘C. Express your answer using two significant figures. Part B: Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 250 ∘C. Express your answer using two significant figures.
Use data in Table B.2 to calculate the following: a. The heat capacity (Cp) of liquid...
Use data in Table B.2 to calculate the following: a. The heat capacity (Cp) of liquid benzene at 40C. (0.136 kJ/mol C) b. The heat capacity at constant pressure of benzene vapor at 40?C. (0.087 kJ/mol C)
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A Using data in Appendix C in the textbook, calculate...
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 440 ∘C. Express your answer using two significant figures. PCO2 =   atm Part B Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 250 ∘C. Express your answer using two significant figures. PCO2 =   atm
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox...
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. 3 I2(s) + 2 Fe(s) ? 2 Fe3+(aq) + 6 I-(aq) Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. 3 I2(s) + 2 Fe(s) 2 Fe3+(aq) + 6 I-(aq) 3.5 × 10-59 8.9 × 10-18 1.7 × 1029 6.1 × 1058 1.1 × 1017 Please explain with each every detail...
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox...
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. Pb 2+(aq) + Cu(s) → Pb(s) + Cu2+(aq)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT