Question

Calculate the wavelengths of the following objects: Part 1 a muon (a subatomic particle with a...

Calculate the wavelengths of the following objects: Part 1 a muon (a subatomic particle with a mass of 1.884 × 10–25 g) traveling at 330.0 m/s 10.66 nm Part 2 an electron (me = 9.10939 × 10–28 g) moving at 3.85 × 106 m/s in an electron microscope nm Part 3 an 75.0 kg athlete running a "4-minute mile" (i.e. 4.00 min/mile) x 10 nm Part 4 Earth (mass = 6.10 × 1027 g) moving through space at 2.80 × 104 m/s nm

Homework Answers

Answer #1

De Broglie Wavelength Equation

The Equation is given by

λ= h/(mv)

where

λ= Wavelength

h = Planck Constant = 6.626*10^-34 J s

m = mass in kg

v = velocity in m/s

Now, substitute all data

a)

λ= h/(mv)

λ= (6.626*10^-34)/(mv)

λ= (6.626*10^-34)/((1.884 *10^-28)(330)) = 1.065*10^-8 m

b)

λ= (6.626*10^-34)/(mv)

λ= (6.626*10^-34)/((9.10939 *10^-31)(3.85*10^6)) = 1.889*10^-10 m

c)

λ= (6.626*10^-34)/(mv)

V = 4 min/mi = 1/4 mi/min = 0.25/60 mi/s = 0.25/60*1609 m/s = 6.704m/s

λ= (6.626*10^-34)/((75)(6.704)) = 1.317*10^-36 m

d)

λ= (6.626*10^-34)/(mv)

λ= (6.626*10^-34)/((6.2*10^30)(2.8*10^4)) = 3.816*10^-69 nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the wavelengths of the following objects in nm a) a muon (a subatomic particle with...
Calculate the wavelengths of the following objects in nm a) a muon (a subatomic particle with a mass of 1.884 × 10–25 g) traveling at 310.0 m/s b) an electron (me = 9.10939 × 10–28 g) moving at 3.80 × 106 m/s in an electron microscope c) an 75.0 kg athlete running a "4-minute mile" (i.e. 4.00 min/mile) d) Earth (mass = 6.20 × 1027 g) moving through space at 3.00 × 104 m/s
Calculate the wavelengths of the following objects: (nm) a muon (a subatomic particle with a mass...
Calculate the wavelengths of the following objects: (nm) a muon (a subatomic particle with a mass of 1.884 × 10–25 g) traveling at 350.0 m/s an electron (me = 9.10939 × 10–28 g) moving at 3.90 × 106 m/s in an electron microscope an 84.0 kg athlete running a "4-minute mile" (i.e. 4.00 min/mile) Earth (mass = 5.80 × 1027 g) moving through space at 2.90 × 104 m/s
1 = an 75.0 kg athlete running a "4-minute mile" (i.e. 4.00 min/mile) 2 = Earth...
1 = an 75.0 kg athlete running a "4-minute mile" (i.e. 4.00 min/mile) 2 = Earth (mass = 6.00 × 1027 g) moving through space at 3.10 × 104 m/s 3. The work function (Φ) for a metal is 6.20×10-19 J. What is the longest wavelength of electromagnetic radiation that can eject an electron from the surface of a piece of the metal?
Calculate the magnitude of the linear momentum for the following cases: (a) a proton with mass...
Calculate the magnitude of the linear momentum for the following cases: (a) a proton with mass equal to 1.67 ×1027 kg, moving with a speed of 5.00 ×106m/s; (b) a 15.0 g bullet moving with a speed of 300 m/s; (c) a 75.0 kg sprinter running with a speed of 10.0 m/s; (d) the Earth (mass =5.98×1024 kg) moving with an orbital speed equal to 2.98×104 m/s.
Just as light waves have particle behavior, a moving particle has a wave nature. The faster...
Just as light waves have particle behavior, a moving particle has a wave nature. The faster the particle is moving, the higher its kinetic energy and the shorter its wavelength. The wavelength, λ, of a particle of mass m, and moving at velocity v, is given by the de Broglie relation λ=hmv where h=6.626×10−34 J⋅s is Planck's constant. This formula applies to all objects, regardless of size, but the de Broglie wavelength of macro objects is miniscule compared to their...
1) Calculate the magnitude of the linear momentum for the following cases. (a) a proton with...
1) Calculate the magnitude of the linear momentum for the following cases. (a) a proton with mass 1.67  10-27 kg, moving with a speed of 4.65  106 m/s kg · m/s (b) a 17.5-g bullet moving with a speed of 340 m/s kg · m/s (c) a 73.5-kg sprinter running with a speed of 12.5 m/s kg · m/s (d) the Earth (mass = 5.98  1024 kg) moving with an orbital speed equal to 2.98  104 m/s. kg · m/s 2) A soccer player...
1. A woman expends 92 kJ of energy in walking a kilometer. The energy is supplied...
1. A woman expends 92 kJ of energy in walking a kilometer. The energy is supplied by the metabolic breakdown of food intake and has a 35 percent efficiency. a) If the woman drives a car over the same distance, how much energy is used if the car gets 8.0 km per liter of gasoline (approximately 20 mi/gal)? The density of gasoline is 0.71 g/mL, and its enthalpy of combustion is 49 kJ/g. b) Compare the efficiencies of the two...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...