Question

In the laboratory, you are given a 18.5 g sample of an unknown metal. The sample...

In the laboratory, you are given a 18.5 g sample of an unknown metal. The sample is irregular in shape, conducts heat and electricity well, and sinks in water. The sample is placed into a partially filled graduated cylinder and displaces 2.06 mL of water. The sample is then heated to 160℃ with a Bunsen burner. The hot metal is placed into a calorimeter filled with exactly 50.0 g of water. The water temperature rises from 20℃ to 24.6℃ . Using the above information and data table provided below, identify the metal and explain your reasoning.

Metal Density (g/cm3 ) Specific Heat (J/g*℃ )
A 8.96 0.385
B 8.96 0.233
C 8.65 0.231
D 7.31 0.385
Water 1.00 4.184

Homework Answers

Answer #1

here answer is almost equal to A here all the process is shown ...and i totally consider upto the 4 decimal .

if u satisfy with the solution please like it ....................thnkxxxxxxxxxxxxxx

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An irregular lump of an unknown metal has a measured density of 5.07 g/mL. The metal...
An irregular lump of an unknown metal has a measured density of 5.07 g/mL. The metal is heated to a temperature of 157 °C and placed in a graduated cylinder filled with 25.0 mL of water at 25.0 °C. After the system has reached thermal equilibrium, the volume in the cylinder is read at 30.5 mL, and the temperature is recorded as 45.5 °C. What is the specific heat of the unknown metal sample? Assume no heat is lost to...
An irregular lump of an unknown metal has a measured density of 3.05 g/mL. The metal...
An irregular lump of an unknown metal has a measured density of 3.05 g/mL. The metal is heated to a temperature of 171 °C and placed in a graduated cylinder filled with 25.0 mL of water at 25.0 °C. After the system has reached thermal equilibrium, the volume in the cylinder is read at 34.3 mL, and the temperature is recorded as 48.7 °C. What is the specific heat of the unknown metal sample? Assume no heat is lost to...
An irregular lump of an unknown metal has a measured density of 5.63 g/mL. The metal...
An irregular lump of an unknown metal has a measured density of 5.63 g/mL. The metal is heated to a temperature of 167 °C and placed in a graduated cylinder filled with 25.0 mL of water at 25.0 °C. After the system has reached thermal equilibrium, the volume in the cylinder is read at 31.9 mL, and the temperature is recorded as 39.5 °C. What is the specific heat of the unknown metal sample? Assume no heat is lost to...
An irregular lump of an unknown metal has a measured density of 5.71 g/mL. The metal...
An irregular lump of an unknown metal has a measured density of 5.71 g/mL. The metal is heated to a temperature of 155 °C and placed in a graduated cylinder filled with 25.0 mL of water at 25.0 °C. After the system has reached thermal equilibrium, the volume in the cylinder is read at 32.9 mL, and the temperature is recorded as 47.4 °C. What is the specific heat of the unknown metal sample? Assume no heat is lost to...
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in...
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in a coffee-cup calorimeter containing 79.0 g of water at a temperature of 18.5 degrees C. After the metal cools, the final temperature of the metal and water is 22.8 degrees C. Calculate the specific heat capacity of the metal, assuming that no heat escapes to the surroundings or is transferred to the calorimeter.
You take a 150.485 g piece of copper and heat it over a Bunsen burner. After...
You take a 150.485 g piece of copper and heat it over a Bunsen burner. After a few minutes of heating you place the heated copper into 500 g of water at 25.00 ̊C. After a while you measure the temperature of the water and find that it is 45.32 ̊C. What was the temperature of the metal before you put it in the water? The specific heat of copper is 0.385 J/(g∙ ̊C). Assume no energy was lost.
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC....
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC. The calorimeter contains 42.3 g of deoinized water. The initial temperature of the water is 22.3 oC. The metal is transferred to the calorimeter and the final temperature reached by the water + metal is 32.2 oC. A. Calculate ∆T for the water (Tfinal – Tinitial). B. Calculate ∆T for the metal. C. The specific heat of water is 4.18 J/goC. Calculate the specific...
What would be the identity of another student's metal unknown if a 61 g sample of...
What would be the identity of another student's metal unknown if a 61 g sample of metal at 100oC is placed into a calorimeter containing 60.0 g of water at 18.0 oC, the temperature of the water increases to 22.0 °C. A. Lead B. Aluminum C.Glass D. Iron E. Tin
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water...
1. A 78.0 g piece of metal at 89.0°C is placed in 125 g of water at 21.0°C contained in a calorimeter. The metal and water come to the same temperature at 27.0°C. - How much heat (in J) did the metal give up to the water? (Assume the specific heat of water is 4.18 J/g·°C across the temperature range.) - What is the specific heat (in J/g·°C) of the metal? 2. A 0.529 g sample of KCl is added...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).