Question

Calculate the partial pressure and gas-phase mole fraction of NO in air that is in contact...

Calculate the partial pressure and gas-phase mole fraction of NO in air that is in contact with water that has a mole fraction of 1.0(10)-6 NO. The temperature and pressure are 20oC and 1 atm.

Homework Answers

Answer #1

partial pressure of NO = molefraction(XNO)*total pressure(pTotal)

                                   = 1.0*10^-6 * 1 atm

                                    = 1.0*10^-6 atm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the partial pressure and gas-phase concentration (in ppm) of n-octane in air when the air...
Calculate the partial pressure and gas-phase concentration (in ppm) of n-octane in air when the air is saturated with that VOC. The total pressure is 1 atm and the temperature is 100ºC.
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition (mole fractions) in a system containing a liquid that is 1.200 mole% N2 and 98.80 mole% water in equilibrium with nitrogen gas and water vapor at 50.0°C. The Henry's law constant for nitrogen in water is recommended by NIST to be well represented by kH = 0.000625 exp[1300 (1/T – 1/298.15)] mol N2 / (kg H2O bar), where T is measured in Kelvin a)...
Calculate the mole fraction of ethane (C2H6) in water at 10ºC when the ethane concentration in...
Calculate the mole fraction of ethane (C2H6) in water at 10ºC when the ethane concentration in air that is in equilibrium with the water is 10,000 ppm. The total pressure is 5.0 atm.
A common concept that crops up in a Dalton's Law context is mole fraction. Suppose you...
A common concept that crops up in a Dalton's Law context is mole fraction. Suppose you had equal moles of two different gases in a mixture. Then the mole fraction for each would be 0.50. The mole fraction for each gas is simply the moles of that gas divided by the total moles in the mixture. Seems simple enough. How does it relate to Dalton's Law? Answer: the mole fraction also gives the fraction of the total pressue each gas...
The pressure in a vessel that contains only methane and water at 70oC is 10.0 atm....
The pressure in a vessel that contains only methane and water at 70oC is 10.0 atm. At the given temperature, the vapor pressure of pure water is 0.3075 atm, and the Henry’s Law constant for methane in water is 6.66 x 104 atm. (a) Using Raoult’s Law, estimate the partial pressure of water and methane in the vapor phase. You may assume that the mole fraction of water in the liquid phase is close to one. (b) Using your answer...
At 20oC, the partial pressure of water is 0.0231 atm, meaning water vapor accounts for _____%...
At 20oC, the partial pressure of water is 0.0231 atm, meaning water vapor accounts for _____% of the air.
Calculate the boiling temperature and the vapor phase mole fraction y1 at 85 kPa of the...
Calculate the boiling temperature and the vapor phase mole fraction y1 at 85 kPa of the binary mixture with the liquid phase mole fraction x1 = 0.40. Consider the mixture ideal. The saturation vapor pressures of the components in the mixture are given below and are T (° C);                               P1sat = exp [14.3 - 2945 / (T + 224)]                               P2sat = exp [14.2 - 2943 / (T + 209)]
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
A mixture of methane gas, CH4(g), and pentane gas, C5H12(g), has a pressure of 0.5015 atm...
A mixture of methane gas, CH4(g), and pentane gas, C5H12(g), has a pressure of 0.5015 atm when placed in a sealed container. The complete combustion of the mixture to carbon dioxide gas, CO2(g), and water vapor, H2O(g), was achieved by adding exactly enough oxygen gas, O2(g), to the container. The pressure of the product mixture in the sealed container is 2.421 atm. Calculate the mole fraction of methane in the initial mixture assuming the temperature and volume remain constant. Xch4=
The solubility of N2 in blood at 37°C and at a partial pressure of 0.80 atm...
The solubility of N2 in blood at 37°C and at a partial pressure of 0.80 atm is5.6 × 10−4 mol/L. A deep-sea diver breathes compressed air with the partial pressure of N2 equal to 5.0 atm. Assume that the total volume of blood in the body is 5.2 L. Calculate the amount of N2 gas released (in liters at 37°C and 1.00 atm) when the diver returns to the surface of the water, where the partial pressure of N2 is...