Question

How would one determine what weak acid/conjugate base pair would go into the creation of a...

How would one determine what weak acid/conjugate base pair would go into the creation of a buffer? Suppose you need to keep the pH of a solution near pH 2.5. Find a combination that you would use.

Homework Answers

Answer #1

to prepare required pH buffer we need to select the pKa value acid which is very close to the pH value

here required pH value 2.5 . so we need acid and conjugate base which has pKa near to this value

H3PO4 , pKa value = 2.16

so we can use this for make 2.5 pH buffer

combinations needed = H3PO4 and H2PO4-

pH = pKa + log [conjugate base / weak acid]

2.5 = 2.16 + log [conjugate base / weak acid]

log [conjugate base / weak acid] = 0.339

conjugate base / weak acid = 2.18

weak acid / conjugate base = 0.458

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When a solution contains a weak acid and its conjugate base or a weak base and...
When a solution contains a weak acid and its conjugate base or a weak base and its conjugate acid, it will be a buffer solution. Buffers resist change in pH following the addition of acid or base. A buffer solution prepared from a weak acid (HA) and its conjugate base (A−) is represented as HA(aq)⇌H+(aq)+A−(aq) The buffer will follow Le Châtelier's principle. If acid is added, the reaction shifts to consume the added H+, forming more HA. When base is...
When a solution contains a weak acid and its conjugate base or a weak base and...
When a solution contains a weak acid and its conjugate base or a weak base and its conjugate acid, it will be a buffer solution. Buffers resist change in pH following the addition of acid or base. A buffer solution prepared from a weak acid (HA) and its conjugate base (A−) is represented as HA(aq)⇌H+(aq)+A−(aq) The buffer will follow Le Châtelier's principle. If acid is added, the reaction shifts to consume the added H+, forming more HA. When base is...
Specify the reagents (an acid and its conjugate base or a base and its conjugate acid)...
Specify the reagents (an acid and its conjugate base or a base and its conjugate acid) and the concentration of each reagent needed to prepare buffer solutions having the listed pH values. NOTE: The optimum buffer solution is one with equal concentrations of the weak acid (weak base) and its conjugate base (conjugate acid). Under these conditions, the pH of the solution is equal to the pKa (pKb). So the best reagent for each of the solutions below is one...
1)Design a buffer that has a pH of 10.12 using one of the weak base/conjugate acid...
1)Design a buffer that has a pH of 10.12 using one of the weak base/conjugate acid systems shown below. Weak Base Kb Conjugate Acid Ka pKa CH3NH2 4.2×10-4 CH3NH3+ 2.4×10-11 10.62 C6H15O3N 5.9×10-7 C6H15O3NH+ 1.7×10-8 7.77 C5H5N 1.5×10-9 C5H5NH+ 6.7×10-6 5.17 How many grams of the bromide salt of the conjugate acid must be combined with how many grams of the weak base, to produce 1.00 L of a buffer that is 1.00 M in the weak base? grams bromide...
Design a buffer that has a pH of 3.73 using one of the weak acid/conjugate base...
Design a buffer that has a pH of 3.73 using one of the weak acid/conjugate base systems shown below. Weak Acid Conjugate Base Ka pKa HC2O4- C2O42- 6.4 × 10-5 4.19 H2PO4- HPO42- 6.2 × 10-8 7.21 HCO3- CO32- 4.8 × 10-11 10.32 How many grams of the sodium salt of the weak acid must be combined with how many grams of the sodium salt of its conjugate base, to produce 1.00 L of a buffer that is 1.00 M...
Design a buffer that has a pH of 6.66 using one of the weak acid/conjugate base...
Design a buffer that has a pH of 6.66 using one of the weak acid/conjugate base systems shown below. Weak Acid Conjugate Base Ka pKa HC2O4- C2O42- 6.4×10-5 4.19 H2PO4- HPO42- 6.2×10-8 7.21 HCO3- CO32- 4.8×10-11 10.32 How many grams of the potassium salt of the weak acid must be combined with how many grams of the potassium salt of its conjugate base, to produce 1.00 L of a buffer that is 1.00 M in the weak base? grams potassium...
Design a buffer that has a pH of 6.65 using one of the weak acid/conjugate base...
Design a buffer that has a pH of 6.65 using one of the weak acid/conjugate base systems shown below. Weak Acid Conjugate Base Ka pKa HC2O4- C2O42- 6.4×10-5 4.19 H2PO4- HPO42- 6.2×10-8 7.21 HCO3- CO32- 4.8×10-11 10.32 How many grams of the sodium salt of the weak acid must be combined with how many grams of the sodium salt of its conjugate base, to produce 1.00 L of a buffer that is 1.00 M in the weak base? grams sodium...
Design a buffer that has a pH of 5.63 using one of the weak base/conjugate acid...
Design a buffer that has a pH of 5.63 using one of the weak base/conjugate acid systems shown below. Weak Base Kb Conjugate Acid Ka pKa CH3NH2 4.2×10-4 CH3NH3+ 2.4×10-11 10.62 C6H15O3N 5.9×10-7 C6H15O3NH+ 1.7×10-8 7.77 C5H5N 1.5×10-9 C5H5NH+ 6.7×10-6 5.17 How many grams of the bromide salt of the conjugate acid must be combined with how many grams of the weak base, to produce 1.00 L of a buffer that is 1.00 M in the weak base? grams bromide...
Design a buffer that has a pH of 5.70 using one of the weak base/conjugate acid...
Design a buffer that has a pH of 5.70 using one of the weak base/conjugate acid systems shown below. Weak Base Kb Conjugate Acid Ka pKa CH3NH2 4.2×10-4 CH3NH3+ 2.4×10-11 10.62 C6H15O3N 5.9×10-7 C6H15O3NH+ 1 .7×10-8 7.77 C5H5N 1.5×10-9 C5H5NH+ 6.7×10-6 5.17 How many grams of the chloride salt of the conjugate acid must be combined with how many grams of the weak base, to produce 1.00 L of a buffer that is 1.00 M in the weak base? grams...
± pH Changes in Buffers When a solution contains a weak acid and its conjugate base...
± pH Changes in Buffers When a solution contains a weak acid and its conjugate base or a weak base and its conjugate acid, it will be a buffer solution. Buffers resist change in pH following the addition of acid or base. A buffer solution prepared from a weak acid (HA) and its conjugate base (A−) is represented as HA(aq)⇌H+(aq)+A−(aq) The buffer will follow Le Châtelier's principle. If acid is added, the reaction shifts to consume the addedH+, forming more...