Question

Suppose a 500.mL flask is filled with 0.30mol of I2 and 0.60mol of HI . The...

Suppose a 500.mL flask is filled with 0.30mol of I2 and 0.60mol of HI . The following reaction becomes possible: +H2gI2g 2HIg The equilibrium constant K for this reaction is 0.247 at the temperature of the flask. Calculate the equilibrium molarity of H2 . Round your answer to one decimal place.

Homework Answers

Answer #1

[I2] = 0.3 mol / 0.5 L = 0.6 M

[HI] = 0.6 mol / 0.5 L = 1.2 M

H2(g) + I2(g) 2HI(g)
IC: 0 0.6 1.2
C: +x +x -2x
EC: x 0.6 + x 1.2 - 2x

Now,

K = [HI]2 / [H2] [I2]

0.247 = (1.2 - 2x)2 / [ x (0.6 + x)]

0.247 = (1.44 - 4.8x + 4x2) / (0.6x + x2)

0.247 (0.6x + x2) = (1.44 - 4.8x + 4x2)

0.247x2 + 0.1482x = 1.44 - 4.8x + 4x2

3.753x2 - 4.9482x + 1.44 = 0

Solving the quadratic equation, we get;

x = 0.88 and x = 0.43

Since for x = 0.88, 2x = 1.76, which is greater than 1.2 (initial concentration of HI).

So, x = 0.43 is accepted.

Hence, [H2] = x = 0.43 M = 0.4 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a 250.mL flask is filled with 0.60mol of I2 and 1.4mol of HI . The...
Suppose a 250.mL flask is filled with 0.60mol of I2 and 1.4mol of HI . The following reaction becomes possible: H2(g) + I2 (g) -> 2HIg The equilibrium constant K for this reaction is 0.644 at the temperature of the flask. Calculate the equilibrium molarity of HI . Round your answer to one decimal place.
Suppose a 250.mL flask is filled with 1.3mol of H2 and 0.30mol of I2 . The...
Suppose a 250.mL flask is filled with 1.3mol of H2 and 0.30mol of I2 . The following reaction becomes possible: H2(g) + I2(g) <--> 2HI(g) The equilibrium constant K for this reaction is 3.99 at the temperature of the flask. Calculate the equilibrium molarity of H2 . Round your answer to two decimal places.
Suppose a 500. mL flask is filled with 1.4 mole of CO , 0.60 mole of...
Suppose a 500. mL flask is filled with 1.4 mole of CO , 0.60 mole of H20 and 1.8 mol of CO2 the following reaction becomes possible CO (g) + H2O (g) = CO2 (g) + H2 (g) the equilibrium constant K for this reaction 4.89 at the temperature of the flask calculate the equilibrium Molarity of H2 round to two DECIMAL places final answer in Molarity
Suppose a 500.mL flask is filled with 1.0mol of O2 and 1.8mol of NO . The...
Suppose a 500.mL flask is filled with 1.0mol of O2 and 1.8mol of NO . The following reaction becomes possible: N2g+O2g =2NOg The equilibrium constant K for this reaction is 0.461 at the temperature of the flask. Calculate the equilibrium molarity of N2 . Round your answer to two decimal places. Final answer in molarity M 2 decimal places
Suppose a 500.mL flask is filled with 1.9mol of Br2 , 0.90mol of OCl2 and 2.0mol...
Suppose a 500.mL flask is filled with 1.9mol of Br2 , 0.90mol of OCl2 and 2.0mol of BrOCl . The following reaction becomes possible: Br2 (g)+OCl2 (g) +BrOCl (g)=BrCl (g) The equilibrium constant K for this reaction is 0.307 at the temperature of the flask. Calculate the equilibrium molarity of BrOCl . Round your answer to two decimal places. final answer in M 2 decimal places
Suppose a 250.mL flask is filled with 1.6mol of O2 and 1.2mol of NO The following...
Suppose a 250.mL flask is filled with 1.6mol of O2 and 1.2mol of NO The following reaction becomes possible: N2(g)+O2(g)---2NOg The equilibrium constant K for this reaction is 0.197 at the temperature of the flask. Calculate the equilibrium molarity of N2 Round your answer to two decimal places.
Suppose a 250.mL flask is filled with 1.7mol of O2 and 1.6mol of NO. The following...
Suppose a 250.mL flask is filled with 1.7mol of O2 and 1.6mol of NO. The following reaction becomes possible: +N2g + O2g <-->2NOg The equilibrium constant K for this reaction is 0.628 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places. *** must calculate for M first by dividing the moles by Liters before placing in the ICE table.
Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 −L flask at 500 K initially...
Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.64 −L flask at 500 K initially contains 0.376 g H2 and 17.97 g I2. At equilibrium, the flask contains 17.76 g HI. Part A Calculate the equilibrium constant at this temperature.                I keep getting 13413.06 and its not right I'm running out of tries, please help me.
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.63 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.63 L flask at a certain temperature initially contains 0.767 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.6 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures.
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.75 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.75 L flask at a certain temperature initially contains 0.764 g H2 and 97.1 g I2. At equilibrium, the flask contains 90.4 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Please explain!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT