Question

The bond dissociation energy for H-O is 463 kJ/mol. In the stratosphere, water vapor photodissociate as...

The bond dissociation energy for H-O is 463 kJ/mol. In the stratosphere, water vapor photodissociate as follows: H2O + hv --> H(g) + OH (g). calculate the heat of formation of OH(g) given the standard heat of formation of H2O(g) is -242 kj/mol.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Explain why o-h has a bond energy of 463 kJ/mol compared to the S-H bond energy...
Explain why o-h has a bond energy of 463 kJ/mol compared to the S-H bond energy of 339 kJ/mol.
Estimate the carbon-carbon bond strength in benzene given: 2C6H6(g)+15O2(g)⟶12CO2(g)+6H2O(g)  ΔH∘=−6339kJ Bond dissociation data are the following: the...
Estimate the carbon-carbon bond strength in benzene given: 2C6H6(g)+15O2(g)⟶12CO2(g)+6H2O(g)  ΔH∘=−6339kJ Bond dissociation data are the following: the strength of the O=O bond in O2 is 498 kJ/mol, the strength of the C=O bond in CO2 is 804 kJ/mol, the strength of the H−O bond in H2O is 460 kJ/mol, the strength of the H−C bond in benzene is 410 kJ/mol.
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g)   +436 O2(g)⟶2O(g)   +495 H2+1/2O2(g)⟶H2O(g)   −242 A. Devise...
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g)   +436 O2(g)⟶2O(g)   +495 H2+1/2O2(g)⟶H2O(g)   −242 A. Devise a way to calculate ΔH for the reaction H2O(g)⟶2H(g)+O(g) B. estimate the H-O bond energy
Calculate the second ionization energy of the metal M (ΔHion2° in kJ/mol) using the following data:...
Calculate the second ionization energy of the metal M (ΔHion2° in kJ/mol) using the following data: Lattice enthalpy of MO(s), ΔHl° = -2297 kJ/mol Bond dissociation enthalpy of O2(g) = +498 kJ/mol First electron affinity of O = -141 kJ/mol Second electron affinity of O = +744 kJ/mol Enthalpy of sublimation of M = + 102 kJ/mol First ionization energy of M = + 340 kJ/mol Standard enthalpy of formation of MO(s), ΔHf° = -336 kJ/mol Refer to the textbook...
The H–Br bond energy is 142 kJ/mol. Therefore the formation of a single bond between atoms...
The H–Br bond energy is 142 kJ/mol. Therefore the formation of a single bond between atoms The H–Br bond energy is 142 kJ/mol. Therefore the formation of a single bond between atoms should require the absorption of 284 kJ per mole of H–Br formed. should result in the release of 142 kJ per mole of H–Br formed. should require the absorption of 142 kJ per mole of H–Br formed. should result in the release of 284 kJ per mole of...
Calculate the average C—C bond strength in cyclopropane (in kJ/mol). Its combustion and the experimental enthalpy...
Calculate the average C—C bond strength in cyclopropane (in kJ/mol). Its combustion and the experimental enthalpy of reaction are: C3H6(g) + 4.5O2(g) → 3CO2(g) + 3H2O(g) ΔHºrxn = -1,957.7 kJ/mol Average bond strentgh (kj/mol): O - H = 463 C - H = 414 C - C = 347 O -- O = 498 (DOUBLE BOND) C -- O = 745 (DOUBLE BOND) C -- O (CO2 = 799) Since all reactants and products are in the gaseous state, bond...
Nitric oxide is a diatomic molecule with a bond dissociation energy (626 kJ/mol) in between oxygen...
Nitric oxide is a diatomic molecule with a bond dissociation energy (626 kJ/mol) in between oxygen (498 kJ/mol) and nitrogen (945 kJ/mol). This _______ (is or is not) consistent with the Lewis structure as it shows a bond order of _______ which is _______ (greater, less than, or the same as) the bond order in oxygen and _______ (greater, less than, or the same as) the bond order in nitrogen. Experimentally, nitric acid is found to be paramagnetic. Using a...
If the heat of fusion for water is 6.01 kJ/mol, the heat of vaporization is 40.79...
If the heat of fusion for water is 6.01 kJ/mol, the heat of vaporization is 40.79 kJ/mol, calculate the heat transferred during the deposition of 2.0 g water vapor. Deposition is the phase change from a vapor to a solid.
What is the heat of combustion (Δ H ° rxn ) for acetylene (C 2 H...
What is the heat of combustion (Δ H ° rxn ) for acetylene (C 2 H 2 ) , assuming that the combustion products are CO 2 ( g ) and H 2 O( g ). Hint make sure to balance the equation. Instead of determining heats of reaction from heats of formation we sometime use average bond dissociation energies to calculate heats of reaction. Why would we need to use bond dissociation energies and how would your formula change?...
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl...
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl = 427 kJ/mol Ionization energy of K(g) = 419 kJ/mol Electron affinity of Cl(g) = –349 kJ/mol Lattice energy of KCl(s) = –705 kJ/mol Bond energy of H2 = 432 kJ/mol Calculate the net change in energy for the following reaction: 2K(s) + 2HCl(g) → 2KCl(s) + H2(g) ΔE = ______ kJ