Question

Determine the value of a for which the system has no solution, exactly one solution, or...

Determine the value of a for which the system has no solution, exactly one solution, or infinitely many solutions.

x + 2y + z = 0

2x - 2y + 3z = 1

x + 2y -(a2 - 5)z = a

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
his is a linear algebra problem Determine the values of a for which the system has...
his is a linear algebra problem Determine the values of a for which the system has no solutions, exactly one solution, or infinitely many solutions. x + 2y - 2z = 3 3x - y + 2z = 3 5x + 3y + (a^2 - 11)z = a + 6 For a = there is no solution. For a = there are infinitely many solutions. For a ≠ ± the system has exactly one solution.
Find the values of a and b for which the following system of linear equations is...
Find the values of a and b for which the following system of linear equations is (i) inconsistent; (ii) has a unique solution; (iii) has infinitely many solutions. For the case where the system has infinitely many solutions, write the general solution. x + y + z = a x + 2y ? z = 0 x + by + 3z = 2
4. Solve the system of linear equations by using the Gauss-Jordan (Matrix) Elimination Method. No credit...
4. Solve the system of linear equations by using the Gauss-Jordan (Matrix) Elimination Method. No credit in use any other method. Use exactly the notation we used in class and in the text. Indicate whether the system has a unique solution, no solution, or infinitely many solutions. In the latter case, present the solutions in parametric form. 3x + 6y + 3z = -6 -2x -3y -z = 1 x +2y + z = -2
Use Gauss-Jordan method (augmented matrix method) to solve the following systems of linear equations. Indicate whether...
Use Gauss-Jordan method (augmented matrix method) to solve the following systems of linear equations. Indicate whether the system has a unique solution, infinitely many solutions, or no solution. Clearly write the row operations you use. (a) (5 points) x + y + z = 6 2x − y − z = 3 x + 2y + 2z = 0 (b) (5 points) x − 2y + z = 4 3x − 5y + 3z = 13 3y − 3z =...
State why the system of equations must have at least one solution. (Select all that apply.)...
State why the system of equations must have at least one solution. (Select all that apply.) 5x + 5y − z = 0 10x + 5y + 5z = 0 5x + 15y − 15z = 0 Solve the system and determine whether it has exactly one solution or infinitely many solutions. (If the system has an infinite number of solutions, express x, y, z in terms of the parameter t.) (x, y, z) =
1)Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution,...
1)Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express your answer in terms of the parameters t and/or s.) x1 + 2x2 + 8x3 = 6 x1 + x2 + 4x3 = 3 (x1, x2, x3) = 2)Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express...
for 7-9 you will solve the following system of equation : 2x+3u+z=17 x-3y+2z=-8 5x-2y+3z=5 7) what...
for 7-9 you will solve the following system of equation : 2x+3u+z=17 x-3y+2z=-8 5x-2y+3z=5 7) what is the solution for x? a)2 b)1 c)infinitely many solution d)no solution 8)what is the solution for y? a)4 b)2 c)inifinitely many solutions d)no solution 9) what is the solution for z? a)9 b)1 c)inifinitely many solutions d)no solution
For a real number "a", consider the system of equations: x+y+z=2 2x+3y+3z=4 2x+3y+(a^2-1)z=a+2 Which of the...
For a real number "a", consider the system of equations: x+y+z=2 2x+3y+3z=4 2x+3y+(a^2-1)z=a+2 Which of the following statements is true? A. If a= 3 then the system is inconsistent. B. If a= 1 then the system has infinitely many solutions. C. If a=−1 then the system has at least two distinct solutions. D. If a= 2 then the system has a unique solution. E. If a=−2 then the system is inconsistent.
Determine the value of k such that the following system of linear equations has infinitely many...
Determine the value of k such that the following system of linear equations has infinitely many solutions, and then find the solutions. (Express x, y, and z in terms of the parameters t and s.) 3x − 2y + 4z = 9 −9x + 6y − 12z = k k = (x, y, z) =
A: Determine whether the system of linear equations has one and only one solution, infinitely many...
A: Determine whether the system of linear equations has one and only one solution, infinitely many solutions, or no solution. 3x - 4y = 9 9x - 12y = 18 B: Find the solution, if one exists. (If there are infinitely many solutions, express x and y in terms of parameter t. If there is no solution, enter no solution.) (x,y)= ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT