Question

his is a linear algebra problem Determine the values of a for which the system has...

his is a linear algebra problem

Determine the values of a for which the system has no solutions, exactly one solution, or infinitely many solutions.

x + 2y - 2z = 3

3x - y + 2z = 3

5x + 3y + (a^2 - 11)z = a + 6

For a = there is no solution.

For a = there are infinitely many solutions.

For a ≠ ± the system has exactly one solution.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the values of a and b for which the following system of linear equations is...
Find the values of a and b for which the following system of linear equations is (i) inconsistent; (ii) has a unique solution; (iii) has infinitely many solutions. For the case where the system has infinitely many solutions, write the general solution. x + y + z = a x + 2y ? z = 0 x + by + 3z = 2
Use Gauss-Jordan method (augmented matrix method) to solve the following systems of linear equations. Indicate whether...
Use Gauss-Jordan method (augmented matrix method) to solve the following systems of linear equations. Indicate whether the system has a unique solution, infinitely many solutions, or no solution. Clearly write the row operations you use. (a) (5 points) x + y + z = 6 2x − y − z = 3 x + 2y + 2z = 0 (b) (5 points) x − 2y + z = 4 3x − 5y + 3z = 13 3y − 3z =...
Use Gauss-Jordan method (augmented matrix method) to solve the following systems of linear equations. Indicate whether...
Use Gauss-Jordan method (augmented matrix method) to solve the following systems of linear equations. Indicate whether the system has a unique solution, infinitely many solutions, or no solution. Clearly write the row operations you use. (a) x − 2y + z = 8 2x − 3y + 2z = 23 − 5y + 5z = 25 (b) x + y + z = 6 2x − y − z = 3 x + 2y + 2z = 0
Determine the value of k such that the following system of linear equations has infinitely many...
Determine the value of k such that the following system of linear equations has infinitely many solutions, and then find the solutions. (Express x, y, and z in terms of the parameters t and s.) 3x − 2y + 4z = 9 −9x + 6y − 12z = k k = (x, y, z) =
4. [10] Consider the system of linear equations x + y + z = 4 x...
4. [10] Consider the system of linear equations x + y + z = 4 x + y + 2z = 6 x + y + (b2 − 3)z = b + 2 where b is an unspecified real number. Determine, with justification, the values of b (if any) for which the system has (i) no solutions; (ii) a unique solution; (ii) infinitely many solutions.
4. Solve the system of linear equations by using the Gauss-Jordan (Matrix) Elimination Method. No credit...
4. Solve the system of linear equations by using the Gauss-Jordan (Matrix) Elimination Method. No credit in use any other method. Use exactly the notation we used in class and in the text. Indicate whether the system has a unique solution, no solution, or infinitely many solutions. In the latter case, present the solutions in parametric form. 3x + 6y + 3z = -6 -2x -3y -z = 1 x +2y + z = -2
1. a) Find the solution to the system of linear equations using matrix row operations. Show...
1. a) Find the solution to the system of linear equations using matrix row operations. Show all your work. x + y + z = 13 x - z = -2 -2x + y = 3 b) How many solutions does the following system have? How do you know? 6x + 4y + 2z = 32 3x - 3y - z = 19 3x + 2y + z = 32
Determine the value of a for which the system has no solution, exactly one solution, or...
Determine the value of a for which the system has no solution, exactly one solution, or infinitely many solutions. x + 2y + z = 0 2x - 2y + 3z = 1 x + 2y -(a2 - 5)z = a
A: Determine whether the system of linear equations has one and only one solution, infinitely many...
A: Determine whether the system of linear equations has one and only one solution, infinitely many solutions, or no solution. 3x - 4y = 9 9x - 12y = 18 B: Find the solution, if one exists. (If there are infinitely many solutions, express x and y in terms of parameter t. If there is no solution, enter no solution.) (x,y)= ?
Consider the following linear system: x + 2y + 3z = 6 2x - 3y +...
Consider the following linear system: x + 2y + 3z = 6 2x - 3y + 2z = 14 3x + y - z = -2 Use Gaussian Elimination with Partial Pivoting to solve a solution in an approximated sense.