Question

Determine whether the binary operation * gives a group structure on the given set Let *...

Determine whether the binary operation * gives a group structure on the given set

Let * be defined on 2Z={2n|n element Z} by letting a*b=a+b

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the binary operation * gives a group structure on the given set. If no...
Determine whether the binary operation * gives a group structure on the given set. If no group results give the axiom in which it fails. Let * be defined on C (complex numbers) by letting a*b = |a+b|.
Decide whether each of the given sets is a group with respect to the indicated operation....
Decide whether each of the given sets is a group with respect to the indicated operation. If it is not a group, state a condition in the definition of group that fails to hold. (a) The set Z+ of all positive integers with operation multiplication. (b) For a fixed integer n, the set of all complex numbers x such that xn = 1 (That is, the set of all nth roots of 1), with operation multiplication. (c) The set Q'...
The following are attempts to define a binary operation on a set, are they actually binary...
The following are attempts to define a binary operation on a set, are they actually binary operations on the given set? If yes, prove it and if not please provide an explanation. 1) a*b = a-b on S, S is the set Z of integers. 2) a*b = a log b on S, S is the set R+ of positive real numbers 3) a*b = |a+b| on S, S is the set of Real numbers. what I want to know...
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Decide whether each of the given sets is a group with respect to the indicated operation....
Decide whether each of the given sets is a group with respect to the indicated operation. If it is not a group, state a condition in the definition of group that fails to hold. (a) The set {[1],[3],[5]}⊂Z8 with the operation multiplication. (b) The set {[0],[2],[4],[6],[8]}⊂Z10 with operation addition.
Let G be a group and a be an element of G. Let φ:Z→G be a...
Let G be a group and a be an element of G. Let φ:Z→G be a map defined by φ(n) =a^{n} for all n∈Z. Find the image φ(Z) and prove that φ(Z) a subgroup of G
Fix a positive real number c, and let S = (−c, c) ⊆ R. Consider the...
Fix a positive real number c, and let S = (−c, c) ⊆ R. Consider the formula x ∗ y :=(x + y)/(1 + xy/c^2). (a)Show that this formula gives a well-defined binary operation on S (I think it is equivalent to say that show the domain of x*y is in (-c,c), but i dont know how to prove that) (b)this operation makes (S, ∗) into an abelian group. (I have already solved this, you can just ignore) (c)Explain why...
3. For each of the piecewise-defined functions f, (i) determine whether f is 1-1; (ii) determine...
3. For each of the piecewise-defined functions f, (i) determine whether f is 1-1; (ii) determine whether f is onto. Prove your answers. (a) f : R → R by f(x) = x^2 if x ≥ 0, 2x if x < 0. (b) f : Z → Z by f(n) = n + 1 if n is even, 2n if n is odd.
Determine whether the given series are absolutely convergent, conditionally convergent or divergent: a.) sigma ∞to n=0...
Determine whether the given series are absolutely convergent, conditionally convergent or divergent: a.) sigma ∞to n=0 (−3)n\(2n + 1)! b.) sigma ∞ ton=1 (2n)!\(n!)2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT