Question

Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0

Solve the ODE
y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve y''+3y'+2y=Delta(t-1)+t^13*Delta(t-0) y(0)=0,y''(0)=0
Solve y''+3y'+2y=Delta(t-1)+t^13*Delta(t-0) y(0)=0,y''(0)=0
Use Laplace to solve y" + 2y' + 2y = e-t, y(0) = 0, y'(0) =...
Use Laplace to solve y" + 2y' + 2y = e-t, y(0) = 0, y'(0) = 1
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Solve y'-3y=2e^t y(0)=e^3-e using Laplace transform.
Solve y'-3y=2e^t y(0)=e^3-e using Laplace transform.
y"-3y''''+2y= te^2t, y(0)=1, y''(0)=4 solve
y"-3y''''+2y= te^2t, y(0)=1, y''(0)=4 solve
Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 Solve...
Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
Please solve the listed initial value problem: y'' + 3y' + 2y = 1 - u(t...
Please solve the listed initial value problem: y'' + 3y' + 2y = 1 - u(t - 10); y(0) = 0, y'(0) = 0
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
Solve the initial value problem: y''−2y'+y=e^t/(1+t^2), y(0) = 1, y'(0) = 0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT