Question

Let S = {?2, (? − 1)2, (? − 2)2 } A) Show that S forms...

Let S = {?2, (? − 1)2, (? − 2)2 }
A) Show that S forms a basis for P2
.
B) Define an inner product on P2 via < p(x) | q(x) > = p(-1)q(-1) + p(0)q(0) + p(1)q(1).
Using this inner product, and Gram-Schmidt, construct an orthonormal basis for P2 from S – use the
vectors in the order given!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Orthogonalize the basis vectors in the spanning set p=2x=1 and q=3x+2 with the inner product of...
Orthogonalize the basis vectors in the spanning set p=2x=1 and q=3x+2 with the inner product of p and q defined to be the evaluation inner product evaluated at x=-1 and x=2. Use gram Schmidt to orthogonalize.
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { 3 (x2−1), 3 (x2 + x + 2)} u1 = u2 =
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the given second-degree polynomials form an orthonormal set, and if not, then apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) { square root 3 (x2−1), square root 3 (x2 + x + 2)} u1 = u2...
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization...
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to transform {(?2, 1), (2, 5)} into an orthonormal basis. (Use the vectors in the order in which they are given.) u1 = ___________ u2 = ___________
Use the inner product <u,v>= 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to...
Use the inner product <u,v>= 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to transform {(2, ?1), (2, 6)} into an orthonormal basis. (Use the vectors in the order in which they are given.) u1 = u2 =
Use the inner product u, v = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization...
Use the inner product u, v = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to transform   {(2, ?1), (2, 6)}  into an orthonormal basis. (Use the vectors in the order in which they are given.) u1 = u2 =
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2...
Let p(x) = a0 + a1x + a2x2 and q(x) = b0 + b1x + b2x2 be vectors in P2 with p, q = a0b0 + a1b1 + a2b2. Determine whether the polynomials form an orthonormal set, and if not, apply the Gram-Schmidt orthonormalization process to form an orthonormal set. (If the set is orthonormal, enter ORTHONORMAL in both answer blanks.) {−2 + x2, −2 + x} u1= u2=
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4...
Let R4 have the inner product <u, v>  =  u1v1 + 2u2v2 + 3u3v3 + 4u4v4 (a) Let w  =  (0, 6, 4, 1). Find ||w||. (b) Let W be the subspace spanned by the vectors u1  =  (0, 0, 2, 1), and   u2  =  (3, 0, −2, 1). Use the Gram-Schmidt process to transform the basis {u1, u2} into an orthonormal basis {v1, v2}. Enter the components of the vector v2 into the answer box below, separated with commas.
Let W be the subspace of R4 spanned by the vectors u1  =  (−1, 0, 1,...
Let W be the subspace of R4 spanned by the vectors u1  =  (−1, 0, 1, 0), u2  =  (0, 1, 1, 0), and u3  =  (0, 0, 1, 1). Use the Gram-Schmidt process to transform the basis {u1, u2, u3} into an orthonormal basis.
Let f(x)=−6, g(x)=−4x+4 and h(x)=−9x2. Consider the inner product 〈p,q〉=∫40p(x)q(x)dx in the vector space C0[0,4] of...
Let f(x)=−6, g(x)=−4x+4 and h(x)=−9x2. Consider the inner product 〈p,q〉=∫40p(x)q(x)dx in the vector space C0[0,4] of continuous functions on the domain [0,4]. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of C0[0,4] spanned by the functions f(x), g(x), and h(x).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT