Question

Solve a) dx/dt = 3xt^2 b) dx/dt + x^2= x c) y’=x^3(1-y)

Solve

a) dx/dt = 3xt^2

b) dx/dt + x^2= x

c) y’=x^3(1-y)

Homework Answers

Answer #1

If you have any questions please let me know

Please give me thumb up..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a...
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a high order linear differential equation for the unknown function of x (t).
1. Solve for y if dy/dx = (1/a)int[ sqr( 1+ (dt/dx)^2)]dx from 0 to x. 2....
1. Solve for y if dy/dx = (1/a)int[ sqr( 1+ (dt/dx)^2)]dx from 0 to x. 2. int[(x^2)( sqr(12-5x^2)]dx =? 3. int[(x^2)sqr(1-x)]dx =? Do this three different ways.
dx/dt = 1 - (b+1) x + a x^2 y dy/dt = bx - a x^2...
dx/dt = 1 - (b+1) x + a x^2 y dy/dt = bx - a x^2 y find all the fixed point and classify them with Jacobian.
Solve the system of differential equations using laplace transformation dy/dt-x=0,dx/dt+y=1,x(0)=-1,y(0)=1
Solve the system of differential equations using laplace transformation dy/dt-x=0,dx/dt+y=1,x(0)=-1,y(0)=1
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
Use the Laplace transform to solve the given system of differential equations. 2 dx/dt + dy/dt...
Use the Laplace transform to solve the given system of differential equations. 2 dx/dt + dy/dt − 2x = 1 dx/dt + dy/dt − 6x − 6y = 2 x(0) = 0, y(0) = 0
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) =...
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) = -1, y(0) = 6
solve the ivp dx/dt=[-3,-3] x              [ 3,-3] x(0)=[3]           [ 9]
solve the ivp dx/dt=[-3,-3] x              [ 3,-3] x(0)=[3]           [ 9]
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
6.x3ey-y3lnx=7; dx/dt=1,x=1,y=3
6.x3ey-y3lnx=7; dx/dt=1,x=1,y=3