Question

Recall that (by the Fundamental Theorem of Algebra) the only polynomial P(t) of degree n−1 that...

Recall that (by the Fundamental Theorem of Algebra) the only polynomial P(t) of degree n−1 that vanishes at n distinct points t1,...,tn ∈ R is P(t) ≡ 0. Using this, show that given any values b1,...,bn ∈ R, there is a polynomial Q(t) = ξ1 + ξ2t + ... + ξntn-1 such that Q(ti) = bi (and thus Q(t) takes precisely the given values at the given points). Hint: Show that the coefficient matrix of the corresponding system is nonsingular.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT