Question

Given that A, B, and C are sets, determine if each statement below is true or...

Given that A, B, and C are sets, determine if each statement below is true or false.

Prove your answer using set builder notation and logical equivalences and/or giving a counterexample.

i. If A ⋃ C = B ⋃ C, then A = B.

ii. If A = B ⋃ C, then (A − C) ⋃ (B ∩ C) = B

Homework Answers

Answer #1

ANSWER:-

Given that

A, B, and C are sets

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
Exercise 4.11. For each of the following, state whether it is true or false. If true,...
Exercise 4.11. For each of the following, state whether it is true or false. If true, prove. If false, provide a counterexample. (i) Let X and Y be sets from Rn. If X ⊂ Y then X is closed if and only if Y is closed. (ii) Let X and Y be sets from Rn. If X ∩Y is closed and convex then either X or Y is closed and convex (one or the other). (iii) Let X be an...
Exercise 4.11. For each of the following, state whether it is true or false. If true,...
Exercise 4.11. For each of the following, state whether it is true or false. If true, prove. If false, provide a counterexample. (i) LetX andY besetsfromRn. IfX⊂Y thenX is closed if and only if Y is closed. (ii) Let X and Y be sets from Rn. If X ∩Y is closed and convex then eitherX or Y is closed and convex (one or the other). (iii) LetX beanopensetandY ⊆X. IfY ≠∅,thenY isaconvexset. (iv) SupposeX isanopensetandY isaconvexset. IfX∩Y ⊂X then X∪Y...
Determine if each of the following statements is true or false. If a statement is true,...
Determine if each of the following statements is true or false. If a statement is true, then write a formal proof of that statement, and if it is false, then provide a counterexample that shows its false. 1) For each integer a there exists an integer n such that a divides (8n +7) and a divides (4n+1), then a divides 5. 2)For each integer n if n is odd, then 8 divides (n4+4n2+11).
Given two sets A and B, the intersection of these sets, denoted A ∩ B, is...
Given two sets A and B, the intersection of these sets, denoted A ∩ B, is the set containing the elements that are in both A and B. That is, A ∩ B = {x : x ∈ A and x ∈ B}. Two sets A and B are disjoint if they have no elements in common. That is, if A ∩ B = ∅. Given two sets A and B, the union of these sets, denoted A ∪ B,...
For each of the following statements: if the statement is true, then give a proof; if...
For each of the following statements: if the statement is true, then give a proof; if the statement is false, then write out the negation and prove that. For all sets A;B and C, if B n A = C n A, then B = C.
IDENTIFY EACH OF THESE STATEMENT AS TRUE OR FALSE. If the statement is true ,explain why...
IDENTIFY EACH OF THESE STATEMENT AS TRUE OR FALSE. If the statement is true ,explain why .if it is false ,give a counterexample.(a) if the diagonals of a quatrilateral are congruent,but only one is the perpendicular of the other,then the quadrilateral is a kite. (b) if the quadrilateral has exactly one of reflectional symmetry,then the quadrilateral is a kite. (c) if the diagonals of a quadrilateral are congruent and bisect each other,then it is square
Let f : A → B and g : B → C. For each statement below...
Let f : A → B and g : B → C. For each statement below either prove it or construct f, g, A, B, C which show that the statement is false. (a) If g ◦ f is surjective, then g is surjective. (b) If g ◦ f is surjective, then f is surjective. (c) If g ◦ f is injective, then f and g are injective
Prove that for all sets A, B, and C, A × (B ∩ C) = (A...
Prove that for all sets A, B, and C, A × (B ∩ C) = (A × B) ∩ (A × C). Using set identity laws
Let A,B,C be arbitrary sets. Prove or find a counterexample to each of the following statements:...
Let A,B,C be arbitrary sets. Prove or find a counterexample to each of the following statements: (a) (A\B)×(C \D) = (A×C)\(B×D) (b) A ⊆ B ⇔ A⊕B ⊆ B (c) A\(B∪C) = (A\B)∩(A\C) (d) A ⊆ (B∪C) ⇔ (A ⊆ B)∨(A ⊆ C) (e) A ⊆ (B∩C) ⇔ (A ⊆ B)∧(A ⊆ C)