Question

Consider the following line integral of the conservative vector field: ZC(y2 sinz−z)dx + 2xy sinz dy...

Consider the following line integral of the conservative vector field: ZC(y2 sinz−z)dx + 2xy sinz dy + (xy2 cosz−x)dz where C is the contour given by r(t) = ht3,2t2 −1,πti, 0 ≤ t ≤ 1/2. a. [4] Find the potential f of the vector field satisfying the condition f(1,1,0) = 0. b. [5] Compute the line integral.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Compute the line integral 2xy dx + x^2 dy along the following curves. (a) C1 along...
Compute the line integral 2xy dx + x^2 dy along the following curves. (a) C1 along the circle x 2 + y 2 = 1 from the point (1, 0) to (0, 1) using x = cost, y = sin t. (b) C2 along the line x + y = 1 from (0, 1) to (1, 0). (c) C = C1 + C2 for the curves C1 and C2 in parts (a) and (b).
Consider the inward fluxRRS(F·n)dS of the vector field F = y2i + xz3j + z2k where...
Consider the inward fluxRRS(F·n)dS of the vector field F = y2i + xz3j + z2k where S is the surface of the region D bounded by the cylinder x2 + y2 = 16 and the planes z = 1, z = 5, x = √3y, y = 0, x,y ≥ 0. a. [2] Compute the divergence of the vector field F at the point (1,1,−1). b. [7] Transform the surface integral into the triple integral using the divergence theorem and...
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C...
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C is given by c(t) = t i + sin t j + cost k for 0 ≤ t ≤ π.
Consider the sum of double integrals Z1 1/√2Zx √1−x2 xy dy dx +Z√2 1 Zx 0...
Consider the sum of double integrals Z1 1/√2Zx √1−x2 xy dy dx +Z√2 1 Zx 0 xy dy dx +Z2 √2Z√4−x2 0 xy dy dx . a. [4] Combine into one integral and describe the domain of integration in terms of polar coordinates. Give the range for the radius r. b. [4] Compute the integral.
Consider the sum of double integrals Z1 1/√2Zx √1−x2 xy dy dx +Z√2 1 Zx 0...
Consider the sum of double integrals Z1 1/√2Zx √1−x2 xy dy dx +Z√2 1 Zx 0 xy dy dx +Z2 √2Z√4−x2 0 xy dy dx . a. [4] Combine into one integral and describe the domain of integration in terms of polar coordinates. Give the range for the radius r. b. [4] Compute the integral.
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz...
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz where C is the curve r(t) = sin(t), cos(t), sin(2t) , 0 ≤ t ≤ 2π. (Hint: Observe that C lies on the surface z = 2xy.) C F · dr =
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1. Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =   + h(y) Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt + (8y + 6t − 1) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1 Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =    + h(y) Find the derivative of h(y). h′(y) = Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt...
Use Implicit Differentiation to find first dy/dx , then the equation of the tangent line to...
Use Implicit Differentiation to find first dy/dx , then the equation of the tangent line to the curve x2+xy+y2= 2-y at the point (0,-2) b. Determine a function of the form f(x)= ax2+ bx + c (that is, find the real numbers a,b,c ) if the graph of the function has slope 2 at the point (3,4) , and has a horizontal tangent where x=1 c. Assume that x,y are functions of variable t satisfying the equation x2+xy=10. Find dy/dt...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT